# The Webb Deep-Sky Society <br> Double Star Section Circular No 31 <br> Contents 

Editorial
Micrometric measurements of double stars in 2021 ..... page 1
Jean-François Courtot
Micrometric measurements of double stars between 2021.14 and 2023.14 ..... page 6
Andreas Alzner
Measurements of double stars with robotic telescopes in 2022 ..... page 17
André Debackère
Photometric and astrometric measurements from CCD images taken in 2022 with remote telescopes ..... page 21
Wilfried Knapp
Unconfirmed Tycho double stars versus Gaia DR3 - I ..... page 29
Ross Gould \& Wilfried Knapp
Unconfirmed Tycho double stars versus Gaia DR3- II ..... page 38
Wilfried Knapp \& Ross Gould
Cumulative index of the contents of Double Star Section Circulars ..... page 50

This circular has been edited and arranged by R.W.Argyle, Director of the Webb Society Double Star Section.
E-mail: rwa@ast.cam.ac.uk
On-line copies of Double Star Section Circulars Nos 1 to 30 are available on the following website: http://www.webbdeepsky.com/

In case of difficulty, contact the Webb Society Webmaster, James Whinfrey
E-mail: james.whinfrey@gmail.com
For further information about the Webb Society contact:
In the USA and Canada: J. E. Isles, 10575 Darrel Drive, Hanover, Michigan 49241, U.S.A.
E-mail: j_isles@yahoo.com
In the UK: D. J. Miles, 10 Rosewood Gardens, Clanfield, Waterlooville, Hampshire, PO8 0LT, England.
E-mail: donjmiles@googlemail.com

## Editorial

The number of measures included in these Circulars is now 87110.

| Observer | WDS code | Pairs | Measures | Method/source |
| :--- | :---: | ---: | ---: | :--- |
|  |  |  |  |  |
| A. Alzner | ALZ | 143 | 377 | Lyot micrometer |
| J.- F. Courtot | CTT | 40 | 151 | RETEL, homemade filar, |
|  |  |  |  | Lyot micrometer |
| A. Debackère | DBR | 10 | 10 | Internet astrometry |
| W. Knapp | KPP | 247 | 247 | Internet astrometry |
| TOTALS |  | 440 | 785 |  |

Bob Argyle, 2023 July

## Useful sites

The following websites also contain a considerable amount of interesting material for the serious double star observer and no claim is made for the completeness of the list. If anyone knows of any others please contact me:

The Washington Double Star catalogue - the complete reference for visual double stars - updated nightly. The site also contains the Sixth Catalogue of Visual Binary Star Orbits and much more at http://www.crf.usno.navy.mil with a mirror site at http://www.astro.gsu.edu/wds
Journal for Double Star Observations (www. jdso.org)
Etoiles Doubles (in French)
A newly established on-line journal and freely available from www. etoilesdoubles.org
El Observador de Estrellas Dobles (in Spanish) (www.elobservadordeestrellasdobles.wordpress.com)
(Unfortunately this publication has closed down. The website currently contains all 27 of the published bulletins.)
Observatori Astronòmic del Garraf (www. oagarraf.net)
Il Bollettino delle Stelle Doppie (in Italian)
(https://sites.google.com/site/ilbollettinodellestelledoppie/)
In addition the Stelle Doppie Double Star Database run by Gianluca Sordiglioni allows the WDS catalogue to be quizzed with various search parameters. You can get a user name and password at http://stelledoppie.it

## Acknowledgements

Much of the work presented here has made use of the Washington Double Star Catalogue maintained at the U.S. Naval Observatory (see above).

# MICROMETRIC MEASURES OF DOUBLE STARS IN 2022 

Jean-François Courtot, Chaumont, France<br>email: jeff6bwo@yahoo.fr

## Introduction

The measurements presented here have been made during 2022 using two different telescopes: a homemade $205-\mathrm{mm}$ (8-inch) Newtonian and either a Retel filar micrometer at a power of x508 or a Lyot double-image micrometer at x 464, and a $279-\mathrm{mm}$ (11-inch) Schmidt-Cassegrain telescope at x430 up to x 640 with different homemade filar micrometers ${ }^{1}$ and a homemade double-image micrometer at x614.

The measurement procedures have been outlined in previous circulars i.e. DSSC $23^{2}$. Further indications on some observed peculiarities with double-image micrometers can also be found in DSSC 24-25 (Ref. 3-4).

Measurements have been arranged as usual in Table 1. Epochs are in Julian years. In last column, "T205" denotes the 205-mm Newtonian telescope, "C11" the 11-inch Schmidt-Cassegrain, " $L$ " is for the Lyot double-image micrometers whilst " $F$ " indicates that a filar micrometer has been used. Table 2 gives a short comment on each measured pair.

As usual also, besides known orbital pairs, a few other pairs with uncertain status have been measured. When available, Gaia-DR2/3 proper motions, parallaxes, luminosity and radial velocity data have been used to investigate their true nature using Dommanget's criteria ${ }^{5,6}$. The followed procedure can be found in DSSC 28 circulars $^{7}$.

## Table 1 - Measures

| Pair | RA | Dec | Va | Vb | $\mathrm{PA}\left({ }^{\circ}\right) \operatorname{Sep}\left({ }^{\prime \prime}\right)$ Epoch | N | Obs. Method |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| STF73AB | 00550 | +2338 | 6.1 | 6.5 | 337.7 | 1.22 | 2022.034 | 4 | CTT T205/L |
| STF180AB | 01535 | +1918 | 4.5 | 4.6 | 1.4 | 7.26 | 2022.066 | 4 | CTT T205/F+L |
| STF425AB | 03401 | +3407 | 7.5 | 7.6 | 57.8 | 1.91 | 2022.108 | 4 | CTT T205/F+L |
| STT98 | 05079 | +0830 | 5.8 | 6.7 | 281.4 | 0.97 | 2022.153 | 4 | CTT T205/L |
| STF795 | 05480 | +0627 | 6.0 | 6.0 | 221.2 | 0.99 | 2022.176 | 4 | CTT T205/L |
|  |  |  |  |  |  |  |  |  |  |
| STF932 | 06344 | +1445 | 8.3 | 8.5 | 304.2 | 1.67 | 2022.194 | 4 | CTT T205/L |
| STF1037AB | 07128 | +2713 | 7.2 | 7.3 | 301.1 | 0.79 | 2022.227 | 5 | CTT T205/L+C11/L |
| STF196AB | 08122 | +1739 | 5.3 | 6.3 | 359.4 | 1.18 | 2022.270 | 5 | CTT T205/L+C11/L |
| STF1273AB-C | 08468 | +0625 | 3.5 | 6.7 | 312.8 | 2.68 | 2022.293 | 4 | CTT T205/L |
| STT215 | 10163 | +1744 | 7.3 | 7.5 | 175.0 | 1.52 | 2022.313 | 4 | CTT T205/L |
|  |  |  |  |  |  |  |  |  |  |
| STF1523AB | 11182 | +3132 | 4.3 | 4.8 | 143.8 | 2.43 | 2022.349 | 4 | CTT T205/L |
| STF1527 | 11190 | +1416 | 7.0 | 8.0 | 308.4 | 0.53 | 2022.369 | 4 | CTT T205/L+C11/L |
| STF1547AB | 11317 | +1422 | 6.3 | 9.1 | 331.5 | 15.51 | 2022.386 | 4 | CTT C11/F |
| STF1639AB | 12244 | +2535 | 6.7 | 7.8 | 322.4 | 1.88 | 2022.393 | 4 | CTT T205/L+C11/F |
| STF1768AB | 13375 | +3618 | 5.0 | 7.0 | 96.7 | 1.66 | 2022.429 | 4 | CTT T205/L |
|  |  |  |  |  |  |  |  |  |  |
| STF1883 | 14489 | +0557 | 7.0 | 7.1 | 277.2 | 1.08 | 2022.454 | 4 | CTT T205/L |
| STF1932AB | 15183 | +2650 | 7.3 | 7.4 | 267.8 | 1.63 | 2022.492 | 4 | CTT T205/L |
| STT298AB | 15360 | +3948 | 7.2 | 8.4 | 191.8 | 1.20 | 2022.509 | 4 | CTT T205/L |
| STT303AB | 16009 | +1316 | 7.7 | 8.1 | 175.2 | 1.65 | 2022.528 | 4 | CTT T205/L |
| STF1998AB | 16044 | -1122 | 4.8 | 4.9 | 14.6 | 1.20 | 2022.540 | 4 | CTT T205/L |
|  |  |  |  |  |  |  |  |  |  |
| STF2055AB | 16309 | +0159 | 4.2 | 5.2 | 47.8 | 1.31 | 2022.562 | 4 | CTT T205/L |
| STF2107AB | 16518 | +2840 | 6.9 | 8.5 | 108.7 | 1.51 | 2022.587 | 4 | CTT T205/L+C11/F |
| STF2118AB | 16564 | +6502 | 7.1 | 7.3 | 64.8 | 1.05 | 2022.601 | 4 | CTT C11/F+L |
| STF2199 | 17386 | +5546 | 8.0 | 8.6 | 51.7 | 2.13 | 2022.612 | 4 | CTT C11/F |


| STF2289 | 18101 | +1629 | 6.7 | 7.2 | 218.5 | 1.25 | 2022.642 | 4 | CTT T205/L+C11/F |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| STF2323AB | 18239 | +5848 | 5.1 | 8.1 | 347.3 | 3.74 | 2022.651 | 4 | CTT T205/L+C11F |
| STF2323AC | 18239 | +5848 | 5.1 | 8.0 | 18.9 | 89.18 | 2022.657 | 4 | CTT T205/F+C11/F |
| STF2486AB | 19121 | +4951 | 6.5 | 6.7 | 202.9 | 6.94 | 2022.685 | 4 | CTT T205/ |
| STF2576FG | 19464 | +3344 | 8.5 | 8.6 | 153.7 | 3.22 | 2022.686 | 4 | CTT T205/F |
| STF2596 | 19540 | +1518 | 7.3 | 8.7 | 296.2 | 2.18 | 2022.718 | 4 | CTT T205/F |
|  |  |  |  |  |  |  |  |  |  |
| STF2658AB | 20136 | +5307 | 7.2 | 9.4 | 105.2 | 5.33 | 2022.736 | 4 | CTT T205/F |
| STF2658AC | 20136 | +5307 | 7.2 | 10.3 | 204.2 | 66.53 | 2022.736 | 4 | CTT T205/F |
| HO128AB | 20229 | +4259 | 6.4 | 8.8 | 355.0 | 1.30 | 2022.770 | 4 | CTT T205/F |
| STTA207AC | 20229 | +4259 | 6.4 | 8.0 | 64.4 | 85.45 | 2022.786 | 4 | CTT T205/F |
| STF2725AB | 20462 | +1554 | 7.5 | 8.2 | 12.6 | 6.24 | 2022.766 | 4 | CTT T205/F |
|  |  |  |  |  |  |  |  |  |  |
| STF2727AB | 20467 | +1607 | 4.4 | 5.0 | 265.3 | 8.97 | 2022.766 | 4 | CTT T205/F |
| STT437AB | 21208 | +3227 | 7.2 | 7.4 | 18.5 | 2.52 | 2022.806 | 4 | CTT T205/F+L |
| SHJ345AB | 22266 | -1645 | 6.3 | 6.4 | 103.2 | 1.29 | 2022.826 | 5 | CTT T205/F+L |
| STF3050AB | 23595 | +3343 | 6.5 | 6.7 | 344.2 | 2.59 | 2022.992 | 3 | CTT T205/L |

## Table 2 - Notes

| Pair | ADS | Notes |
| :---: | :---: | :---: |
| STF73AB | 755 | Orbital pair. Direct relative motion. Second revolution since W. Struve. |
| STF180AB | 1507 | Very slow direct relative motion: $1^{\circ}$ in 192 yrs. Getting closer: $-1^{\prime \prime} .4$. No Gaia-DR2 luminosity nor radial velocity data for this pair. From data published in Ref. 8 (p.106), first Dommanget criterion: 54 $4^{\prime \prime}$ (current measured separation: $7^{\prime \prime} .3$ ). Second criterion: $9^{\prime \prime}$. The noticeable discrepancy between the two criteria likely due here to high relative error in used radial velocity data ( $\pm 2 \mathrm{~km} / \mathrm{s}$ i.e. $54 \%$ ). After first criterion especially, possibly an orbital pair however. Relative position from Gaia-DR2 equatorial coordinates for 2015.5: $0^{\circ} .8 / 7^{\prime \prime} .55$, compatible with micrometric measurements. |
| STF425AB | 266 | Orbital pair, retrograde relative motion: $48^{\circ}$ in 192 yrs. Getting closer: $-1^{\prime \prime}$ |
| STT98 | 3711 | Orbital pair, retrograde relative motion: $330^{\circ}$ since 1844. Getting wider. Nearly 1 mag. difference between both components. Clearly split with gap using the $205-\mathrm{mm}$ Newtonian. |
| STF795 | 4390 | Orbital pair, direct relative motion: $20^{\circ}$ in 191 yrs. Getting closer: $-0^{\prime \prime} .8$. |
| STF932 | 5197 | Orbital pair, retrograde relative motion: $39^{\circ}$ in 192 yrs. Getting closer:-0" .8 . |
| STF1037AB | 58 | Orbital pair, retrograde relative motion. Second revolution since W. Struve. Getting closer. Split with gap using the T205. |
| STF1196AB | 6650 | Orbital pair, retrograde relative motion. Fourth revolution since W. Struve. Getting slightly closer. |
| STF1273 AB-C | 6993 | Orbital pair, direct relative motion: $116^{\circ}$ in 192 yrs. Getting slightly closer. |
| STT215 | 770 | Orbital pair, retrograde relative motion: $92^{\circ}$ in 178 yrs. Near apastron. |
| STF1523AB | 8119 | Orbital pair, retrograde relative motion. Fourth revolution since W. Struve (1826). |
| STF1527 | 8128 | Orbital pair, direct relative motion: $298^{\circ}$ in 193 yrs. Getting wider. Nearly 1 magnitude difference between components. Elongated image using the T205mm. ' 8 '-shaped image with the C11, no gap however. |
| STF1547AB | 8196 | Very slow orbital pair, direct relative motion: $12^{\circ}$ in 193 yrs. Separation without any noticeable change. |
| STF1639AB | 8539 | Orbital pair, retrograde relative motion: $330^{\circ}$ in 186 yrs. Getting slightly wider. Nearly one magnitude difference between components. |
| STF1768AB | 8974 | Orbital pair, retrograde relative motion: $339^{\circ}$ in 191 yrs. Nearly 2 magnitude difference between components. |
| STF1883 | 9392 | Orbital pair, retrograde relative motion, completing first revolution since W. Struve (1830): $354^{\circ}$ in 192 yrs. Nearly 0.1 magnitude difference between components. Visual estimation: 7.0/7.1. WDS mentions: 7.02/8.95 (the latter not observed). |
| STF1932AB | 9578 | 隹 |


|  |  | ): $355^{\circ}$ in 192 yrs. |
| :---: | :---: | :---: |
| STT298AB | 9716 | Orbital pair, direct relative motion. Fourth revolution since O. Struve (1846). Magnitude for secondary: rather 7.4 than 8.4 as mentioned in WDS. |
| STT303AB | 9880 | Orbital pair, direct relative motion: $65^{\circ}$ in 176 yrs. Getting wider. |
| STF1998AB | 9909 | Orbital pair, direct relative motion. Fifth revolution since W. Struve (1825). |
| STF2055AB | 10087 | Orbital pair, direct relative motion. Second revolution since W. Struve (1825). |
| STF2107AB | 10235 | Orbital pair, direct relative motion. $321^{\circ}$ in 193 yrs. |
| STF2118AB | 10279 | Orbital pair, retrograde relative motion: $179^{\circ}$ in 190 yrs. |
| STF2199 | 10699 | Orbital pair, very slow retrograde relative motion: $63^{\circ}$ in 192 yrs. |
| STF2289 | 11123 | Long period orbital pair, very slow retrograde relative motion: $25^{\circ}$ in 193 yrs. |
| STF2323AB | 11336 | Long period orbital pair, very slow retrograde relative motion: $17^{\circ}$ in 189 yrs. |
| STF2323AC | 11336 | Nearly fixed since W. Struve (1834). |
| STF2486AB | 12169 | Long period orbital pair, very slow retrograde relative motion: $20^{\circ}$ in 190 yrs. Getting closer: $-3^{\prime \prime} .5$. Highly inclined orbit. |
| STF2576FG | 12889 | Orbital pair, retrograde relative motion: $344^{\circ}$ in 191 yrs. Completing its first revolution since W. Struve. |
| STF2596 | 13082 | Very long period orbital pair, retrograde relative motion: $56^{\circ}$ in 191 yrs. Separation without any noticeable change. |
| STF2658AB | 13560 | Very long period orbital pair, retrograde relative motion: $20^{\circ}$ in 191 yrs. |
| STF2658AC | 13560 | Certainly an optical pair. Much different parallaxes and proper motions for A and C according to Gaia-DR2. Luminosity and radial velocity missing for C. Dommanget criteria undetermined however. C brighter than B ( 0.1 mag . or so) at the time of observation. |
| HO128AB | 13786 | Long period orbital pair, retrograde relative motion: $39^{\circ}$ in 136 yrs. Getting wider. |
| STTA207AC | 13786 | Important relative displacement: $12^{\prime \prime}$ in 146 yrs. Much different proper motions and parallaxes for A and C. Likely an optical pair although Dommanget criteria undetermined (no Gaia luminosity data for C component). |
| STF2725AB | 14270 | Very long period orbital pair, direct relative motion: $15^{\circ}$ in 192 yrs, getting wider. |
| STF2727AB | 14279 | Very long period orbital pair, retrograde relative motion: $8^{\circ}$ in 192 yrs. Getting closer. |
| STT437AB | 14889 | Very long period orbital pair, retrograde relative motion: $48^{\circ}$ in 177 yrs , getting wider: $+1^{\prime \prime} .2$. |
| SHJ345AB | 15934 | 53 Aqr. Long period orbital pair. Direct relative motion: $161^{\circ}$ in 199 yrs. Near periastron. |
| STF3050AB | 17149 | Long period orbital pair. Direct relative motion: $153^{\circ}$ in 190 yrs. Getting wider. |

## Table 3 - Residuals from known orbits

| Pair | Comp | ADS | Residual(O-C) |  | Orbit | Date | Grade | $\begin{array}{l}\text { Period } \\ (\mathrm{yrs})\end{array}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  | $\mathrm{PA}\left({ }^{\circ}\right)$ | Sep $\left({ }^{\prime \prime}\right)$ |  |  |  |  |$)$


| STF1527 |  | 8128 | $-3^{\circ} .7$ | $-0^{\prime \prime} .03$ | Tokovinin | 2012 | 3 | 415 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF1547 | AB | 8196 | $-0^{\circ} .8$ | $+0^{\prime \prime} .17$ | Hartkopf | 2013 | 5 | 3453 |
| STF1639 | AB | 8539 | $-0^{\circ} .1$ | $0^{\prime \prime} .00$ | Olevic | 2000 | 4 | 575 |
|  |  |  | $-1^{\circ} .9$ | $+0^{\prime \prime} .06$ | Izmailov | 2019 | 3 | 421 |
| STF1768 | AB | 8974 | $+3^{\circ} .8$ | $+0^{\prime \prime} .02$ | Söderhjelm | 1999 | 3 | 228 |
|  |  |  | $+3^{\circ} .0$ | $-0^{\prime \prime} .06$ | Izmailov | 2019 | 3 | 245 |
| STF1883 |  | 9392 | $+0^{\circ} .6$ | $+0^{\prime \prime} .02$ | Izmailov | 2019 | 2 | 226 |
| STF1932 | AB | 9578 | $-0^{\circ} .5$ | $+0^{\prime \prime} .03$ | Izmailov | 2019 | 2 | 197 |
| STT298 | AB | 9716 | $+0^{\circ} .1$ | $+0^{\prime \prime} .03$ | Söderhjelm | 1999 | 1 | 55 |
|  |  |  | $+0^{\circ} .4$ | $+0^{\prime \prime} .05$ | Izmailov | 2019 | 1 | 55 |
| STT303 | AB | 9880 | $+0^{\circ} .4$ | $+0^{\prime \prime} .05$ | Izmailov | 2019 | 4 | 1114 |
| STF1998 | AB | 9909 | $-0^{\circ} .7$ | $+0^{\prime \prime} .08$ | Docobo | 2009 | 1 | 46 |
| STF2055 | AB | 10087 | $+0^{\circ} .2$ | $-0^{\prime \prime} .07$ | Heintz | 1993 | 2 | 129 |
|  |  |  | $+0^{\circ} .3$ | $-0^{\prime \prime} .05$ | Izmailov | 2019 | 2 | 129 |
| STF2107 | AB | 10235 | $-1^{\circ} .8$ | $+0^{\prime \prime} .16$ | Scardia | 1984 | 3 | 258 |
|  |  |  | $+1^{\circ} .1$ | $+0^{\prime \prime} .08$ | Izmailov | 2019 | 2 | 274 |
| STF2118 | AB | 10279 | $-2^{\circ} .0$ | $-0^{\prime \prime} .26$ | Scardia | 1981 | 4 | 578 |
|  |  |  | $+0^{\circ} .2$ | $+0^{\prime \prime} .15$ | Izmailov | 2019 | 3 | 321 |
| STF2199 |  | 10699 | $+0^{\circ} .9$ | $+0^{\prime \prime} .18$ | Popovic | 1995 | 5 | 1299 |
|  |  |  | $-1^{\circ} .4$ | $+0^{\prime \prime} .07$ | Izmailov | 2019 | 4 | 1126 |
| STF2289 |  | 11123 | $+3^{\circ} .7$ | $+0^{\prime \prime} .01$ | Hopmann | 1964 | 4 | 3040 |
|  |  |  | $+0^{\circ} .3$ | $+0^{\prime \prime} .04$ | Izmailov | 2019 | 4 | 1959 |
| STF2323 | AB | 11336 | $-0^{\circ} .5$ | $0^{\prime \prime} .00$ | Novakovic | 2006 | 5 | 3952 |
|  |  |  | $-0^{\circ} .8$ | $-0^{\prime \prime} .03$ | Izmailov | 2019 | 4 | 2456 |
| STF2486 | AB | 12169 | $+0^{\circ} .3$ | $-0^{\prime \prime} .24$ | Hale | 1994 | 5 | 3100 |
|  |  |  | $-0^{\circ} .3$ | $-0^{\prime \prime} .12$ | Izmailov | 2019 | 4 | 1459 |
| STF2576 | FG | 12889 | $-0^{\circ} .1$ | $+0^{\prime \prime} .08$ | Söderhjelm | 1999 | 2 | 232 |
| STF2596 |  | 13082 | $+0^{\circ} .3$ | $+0^{\prime \prime} .20$ | Izmailov | 2019 | 4 | 2971 |
| STF2658 | AB | 13560 | $-0^{\circ} .2$ | $-0^{\prime \prime} .04$ | Izmailov | 2019 | 5 | 5632 |
| HO128 | AB | 13786 | $-0^{\circ} .7$ | $-0^{\prime \prime} .02$ | Izmailov | 2019 | 5 | 1028 |
| STF2725 | AB | 14270 | $+0^{\circ} .3$ | $-0^{\prime \prime} .01$ | Hopmann | 1973 | 4 | 2851 |
|  |  |  | $+0^{\circ} .6$ | $+0^{\prime \prime} .02$ | Izmailov | 2019 | 4 | 2107 |
| STF2727 | AB | 14279 | $+0^{\circ} .7$ | $+0^{\prime \prime} .15$ | Hale | 1994 | 4 | 3249 |
| STT437 | AB | 14889 | $0^{\circ} .0$ | $+0^{\prime \prime} .06$ | Izmailov | 2019 | 4 | 1218 |
| SHJ345 | AB | 15934 | $+1^{\circ} .0$ | $+0^{\prime \prime} .03$ | Tokovinin | 2020 | 4 | 2000 |
| STF3050 | AB | 17149 | $+0^{\circ} .5$ | $+0^{\prime \prime} .06$ | Izmailov | 2019 | 3 | 573 |

## References

(1) Courtot, J.-F., 2017, Webb Society Deep Sky Observer, 177, 16 sq.
(2) Courtot, J.-F., 2015, Webb Society Double Star Circulars, 23, 6 sq.
(3) Courtot, J.-F., 2016, Webb Society Double Star Circulars, 24, 6-7.
(4) Courtot, J.-F., 2017, Webb Society Double Star Circulars, 25, 16.
(5) Dommanget, J., Critère de non-pèriodicité du mouvement relatif d'un couple stellaire visuel, Bulletin Astronomique, Paris 1955
(6) Dommanget, J., Second Critère de non-pèriodicité du mouvement relatif d'un couple stellaire visuel, Bulletin Astronomique, Paris 1960.
(7) Courtot, J.-F., 2020, Webb Society Double Star Circulars, 28, 4 sq.
(8) Argyle, R., Swan, M, James, A., An Anthology of Visual Double Stars, Cambridge University Press 2019.

## Acknowledgements

Sincere thanks to Bob Argyle for arranging and editing this Circular and to our colleagues at the US Naval Observatory for maintaining the Washington Double Star Catalogue. This work makes use also of results from the European Space Agency (ESA) space mission Gaia. Gaia data are being processed by the Gaia Data Processing and Analysis Consortium (DPAC). Funding for the DPAC is provided by national institutions, in particular the institutions participating in the Gaia MultiLateral Agreement (MLA).
The Gaia mission website is https://www.cosmos.esa.int/gaia.
The Gaia archive website is https://archives.esac.esa.int/gaia

# MICROMETER MEASURES OF DOUBLE STARS WITH A 32.5-CM F19 CASSEGRAIN AND A MECA-PRECIS DOUBLE IMAGE MICROMETER FROM 2021.14 TO 2023.14 

Andreas Alzner, Hemhofen, Germany

email: aalzner@t-online.de

## Results and Method

The total number of measurements is 377 on 143 double stars. In addition, nine negative observations on seven pairs were obtained. Most of the pairs are in orbital motion. All measurements were obtained by using a $32.5-\mathrm{cm} \mathrm{f} / 19$ Cassegrain sited in Hemhofen (latitude N49ㅇ́ $42^{\prime}$ ) close to Erlangen, Germany. The telescope was designed and constructed in 1996 by Peter Grosse, employee of Zeiss Jena. The limit for clearly resolvable stars is $0^{\prime \prime} .40$.

The following micrometer was used: a MECA PRECIS Double Image Micrometer with a spar plate (type Bernard Lyot) with magnifications of 390x, 490x, 620x, 690x, 770x. Mostly, the 620x magnification was applied. On each night, the distance and the PA each are set two to ten times (mostly four times). When the distance is less than about $0^{\prime \prime} .4$, the distance is measured as well as estimated, and the final value is the mean value. Mostly, the difference between the 2 methods does not exceed $0^{\prime \prime} .05$.

Residuals were calculated for 118 pairs with known orbits and the corrections for precession were taken into account. In some cases, the residuals were additionally calculated for older orbit calculations that are included in the WDS Master file database.

## Acknowledgements

Many thanks to R. W. Argyle for his support and the Webb Society for publishing the results. I thank R. Matson, Stephen J. Williams, W.I. Hartkopf and B. Mason for maintaining the WDS an indispensable tool accompanying me for more than 30 years. For the calculation of the residuals mostly the orbital elements given in the 6th Catalogue of Orbits of Visual Binary Stars available from the U.S. Naval Observatory were used.
This research has made use of the SIMBAD database, operated at CDS, Strasbourg, France and the Washington Double Star Catalog maintained at the U.S. Naval Observatory.

## References

(1) Alzner, A., 1998, $A \xi A S, 132,237-252$
(2) Docobo, J.A., Ling, J.F., Campo, P.P., Catalogue of Orbits and Ephemerides of Visual Double Stars, 2013 Version. Observatorio Astronomico Ramon Maria Aller. The catalogue is available under the Double Star Library.
(3) Hartkopf, W.I., Tokovinin, A., \& Mason, B.D., 2012, AJ, 143, 42
(4) Hartkopf, W. I., Matson, R. A. \& Mason, B. D., Second Catalog of Rectilinear Elements, U.S. Naval Observatory, Washington, DC http://www. astro.gsu.edu/wds/lin2.html (called 'LIN2')
(5) Heintz, W.D., A Study of Multiple-Star Systems, 1996, AJ, 111, Number 1, 408-411
(6) IAU, Commission G1, Double Star Information Circular No. 209 (February 2023)
(7) Knapp, W., Neglected Orbits in the 6th Catalog of Orbits of Visual Binary Stars, JDSO, 2021, 17, No.4, October, 19
(8) Matson, R. A., Williams, S. J., Hartkopf, W. I. \& Mason, B. D.; Sixth Catalog of Orbits of Visual Binary Stars; US Naval Observatory, Washington DC.
(9) McAlister, H.A., Hartkopf, W. I., Mason, B. D. \& Wycoff, G.L.: Fourth Catalog of Interferometric Measurements of Binary Stars. Astrometry Department, U.S. Naval Observatory 3450 Massachusetts Ave, NW, Washington, DC 20392.
(10) Scardia, M., Prieur, J.-L., Pansecchi, L., Argyle, R., Zanutta, A., Aristidi, E., 2018, AN, 339(7-8), 571 - 585

Table 1 - Measures
In this table, the position angle has not been corrected for precession, and is thus based on the epoch of observation.

Col 1: $\quad$ Pair $=$ Name of star
Col 2: $\quad$ Component ( $\mathrm{cL}=$ center of luminosity)
Col 3: RA 2000
Col 4: DEC 2000
Col 5: $\quad \Delta m=$ estimated magnitude difference
Col 6: $\quad \mathrm{PA}\left({ }^{\circ}\right)$
Col 7: $\quad$ Separation (" $)$
Col 8: Epoch
Col 9: $\quad \mathrm{N}=$ number of nights
Col 10: observer
Col 11: note indicated

Observer: Andreas Alzner, method: 325-mm Cassegrain, Double image micrometer

| Pair | Comp | RA | Dec | $\Delta m$ | $\mathrm{PA}\left({ }^{\circ}\right)$ | Sep ( ${ }^{\prime \prime}$ ) | Epoch | N | Observer |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF202 |  | 0202.0 | +0246 | 1.1 | 259.7 | 1.87 | 2023.06 | 3 | Alz |  |
| STF299 | AB | 0243.3 | +0314 | 2.5 | 299.5 | 1.93 | 2023.09 | 5 | Alz | note |
| STF333 |  | 0259.2 | +2120 | 0.5 | 210.7 | 1.32 | 2023.11 | 3 | Alz |  |
| STF367 |  | 0314.0 | +0044 | 0.1 | 127.6 | 1.30 | 2023.11 | 2 | Alz |  |
| HDS509 | AaAb | 0401.8 | +1000 | 1.9 | 53.5 | 0.74 | 2021.15 | 2 | Alz | note |
| STT71 |  | 0406.9 | $+3327$ | 1.9 | 234.7 | 0.75 | 2023.13 | 2 | Alz |  |
| STF460 |  | 0410.0 | +8042 | 0.8 | 155.8 | 0.78 | 2022.15 | 2 | Alz |  |
| STT77 |  | 0415.9 | +3142 | 0.0 | 306.5 | 0.42 | 2021.15 | 2 | Alz |  |
| STT75 |  | 0418.6 | $+6030$ | 0.4 | 184.0 | 0.30 | 2023.13 | 2 | Alz |  |
| STF535 |  | 0423.3 | +1123 | 1.2 | 266.8 | 1.08 | 2023.13 | 2 | Alz |  |
| STF554 |  | 0430.1 | +1538 | 2.0 | 16.6 | 1.33 | 2021.15 | 2 | Alz |  |
| STF559 |  | 0433.3 | +1757 | 0.1 | 276.8 | 2.94 | 2023.08 | 2 | Alz |  |
| STF566 | AB-C | 0440.0 | +5328 | 1.3 | 156.8 | 0.79 | 2022.15 | 2 | Alz |  |
| STF577 |  | 0442.2 | +3731 | 0.1 | 314.6 | 0.71 | 2023.12 | 4 | Alz |  |
| HU612 |  | 0447.8 | +5318 | 1.0 | 6.8 | 0.71 | 2022.15 | 2 | Alz |  |
| STT95 |  | 0505.5 | +1948 | 0.6 | 291.9 | 0.93 | 2022.15 | 2 | Alz | note |
| STT98 |  | 0507.9 | +0830 | 0.8 | 280.4 | 0.97 | 2022.15 | 2 | Alz |  |
| STF657 |  | 0518.8 | +5250 | 0.5 | 312.0 | 0.94 | 2023.12 | 5 | Alz |  |
| WNC2 | A-BC | 0523.9 | -0052 | 0.3 | 158.7 | 3.11 | 2021.14 | 1 | Alz |  |
| DA5 | AB | 0524.5 | -0224 | 1.3 | 75.9 | 1.82 | 2022.16 | 3 | Alz | note |
| STF677 |  | 0524.7 | +6323 | 0.7 | 105.9 | 1.19 | 2022.17 | 2 | Alz |  |
| STF728 |  | 0530.8 | +0557 | 1.1 | 44.1 | 1.30 | 2022.18 | 4 | Alz |  |


| DA3 | 0535.9 | -0538 | 0.8 | 171.3 | 0.86 | 2022.17 | 1 | Alz |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF742 | 0536.4 | +2200 | 0.4 | 275.1 | 4.17 | 2023.12 | 3 | Alz |  |
| STF774 | 0540.7 | -0157 | 2.0 | 166.9 | 2.47 | 2022.20 | 2 | Alz | note |
| STF787 | 0546.0 | +2119 | 0.6 | 56.9 | 0.67 | 2021.15 | 2 | Alz |  |
| STT119 | 0547.9 | +0758 | 0.4 | 354.6 | 0.71 | 2021.15 | 2 | Alz |  |
| STF795 | 0548.0 | +0627 | 0.0 | 222.8 | 1.00 | 2021.16 | 1 | Alz | note |
|  |  |  | 0.0 | 219.9 | 0.96 | 2022.16 | 2 | Alz |  |
|  |  |  | 0.0 | 221.5 | 0.97 | 2023.14 | 1 | Alz |  |
| STF3115 | 0549.1 | ${ }_{+6248}$ | 0.9 | 329.6 | 0.78 | 2023.14 | 3 | Alz |  |
| STT124 | 0558.9 | +1248 | 1.2 | 297.9 | 0.63 | 2022.16 | 2 | Alz | note |
| STT121 | 0605.3 | +7400 | 0.8 | 202.5 | 0.38 | 2023.14 | 1 | Alz |  |
| BU1008 | 0614.9 | +2230 | 2.8 | 256.2 | 1.90 | 2021.16 | 2 | Alz | note |
| STF881 | 0622.1 | +5922 | 0.8 | 154.1 | 0.66 | 2023.14 | 1 | Alz |  |
| STT139 | 0625.6 | $+2227$ | 1.2 | 262.9 | 0.82 | 2022.18 | 2 | Alz |  |
| STF932 | 0634.4 | +1445 | 0.2 | 303.4 | 1.59 | 2022.18 | 2 | Alz |  |
| STT150 | 0639.3 | +4200 | 0.9 | 5.8 | 0.31 | 2022.18 | 2 | Alz |  |
| STT157 | 0647.8 | +0020 | 0.4 | 157.1 | 0.63 | 2022.18 | 2 | Alz |  |
| STF981 | 0655.5 | +3010 | 0.4 | 109.6 | 0.71 | 2022.18 | 3 | Alz |  |
| STT159 | 0657.3 | +5825 | 1.3 | 238.7 | 0.75 | 2022.18 | 2 | Alz |  |
| STF1037 | 0712.8 | +2713 | 0.1 | 299.5 | 0.81 | 2022.20 | 3 | Alz |  |
| STT520 | 0713.8 | +2830 | 1.7 | 32.8 | 0.63 | 2021.24 | 2 | Alz | note |
| STF1110 AB | 0734.6 | +3153 | 0.7 | 51.5 | 5.42 | 2021.25 | 4 | Alz |  |
|  |  |  | 0.7 | 50.2 | 5.50 | 2022.22 | 3 | Alz |  |
| STF1126 | 0740.1 | +0514 | 0.5 | 176.0 | 0.83 | 2021.26 | 2 | Alz |  |
| STF1157 | 0754.6 | -0248 | 0.1 | 168.4 | 0.66 | 2021.25 | 3 | Alz |  |
| STF1165 | 0802.1 | +5437 |  | single |  | 2021.27 | 1 | Alz | note |
| STF1175 | 0802.4 | +0409 | 1.4 | 289.7 | 1.47 | 2022.20 | 3 | Alz |  |
| STT186 | 0803.3 | +2616 | 0.2 | 74.0 | 1.04 | 2022.22 | 3 | Alz |  |
| STF1187 | 0809.5 | +3213 | 1.0 | 20.5 | 3.09 | 2021.15 | 2 | Alz |  |
|  |  |  | 0.6 | 20.0 | 3.03 | 2022.22 | 3 | Alz |  |
| COU47 | 0839.7 | +2005 |  | panion $n$ | seen) | 2022.20 | 1 | Alz |  |
| STF1273 cL(AB)-C | 0846.8 | +0625 | 2.7 | 313.7 | 2.70 | 2022.21 | 2 | Alz |  |
| A2473 | 0850.7 | +1800 | 0.0 | 113.4 | 0.26 | 2022.23 | 2 | Alz | note |
| VDK3 | 0850.7 | +0752 | 0.5 | 204.3 | 0.99 | 2022.23 | 2 | Alz |  |
| STF1318 | 0913.6 | +4659 | 1.4 | 227.5 | 2.46 | 2022.23 | 2 | Alz |  |
| STF1338 | 0921.0 | +3811 | 0.4 | 316.9 | 1.18 | 2021.15 | 2 | Alz | note |
| STT200 | 0924.9 | +5134 | 2.1 | 334.1 | 1.21 | 2021.24 | 2 | Alz |  |
| STF1355 | 0927.3 | +0614 | 0.0 | 357.0 | 1.73 | 2021.29 | 2 | Alz |  |
| STF1374 | 0941.4 | +3857 | 1.0 | 312.9 | 2.73 | 2022.21 | 3 | Alz |  |
| STF1406 | 1005.6 | +3105 | 1.1 | 216.6 | 0.77 | 2022.27 | 2 | Alz |  |
| A2142 | 1005.7 | +4103 | 0.8 | 293.8 | 1.11 | 2022.30 | 1 | Alz |  |
| STT215 | 1016.3 | +1744 | 0.3 | 174.8 | 1.48 | 2021.25 | 3 | Alz |  |
| STF1424 | 1020.0 | +1951 | 1.4 | 126.6 | 4.70 | 2022.35 | 3 | Alz |  |
| STF1426 | 1020.5 | +0626 | 0.4 | 312.6 | 0.92 | 2021.31 | 2 | Alz |  |
| STT216 | 1022.7 | +1621 | 2.5 | 230.5 | 2.30 | 2021.26 | 2 | Alz |  |
| STT217 | 1026.9 | +1713 | 0.3 | 150.0 | 0.84 | 2021.24 | 2 | Alz |  |
| STT220 | 1029.2 | +1009 |  | panion $n$ | seen) | 2021.27 | 1 | Alz |  |
| STF1457 | 1038.7 | +0544 | 0.5 | 334.3 | 1.85 | 2022.34 | 2 | Alz |  |
| STT228 | 1047.3 | +2235 | 0.8 | 166.6 | 0.66 | 2021.31 | 2 | Alz |  |
| A2773 | 1052.6 | +0500 | 1.7 | 345.8 | 1.74 | 2021.30 | 3 | Alz |  |
| STF1517 | 1113.7 | +20 | 0.1 | 133.2 | 0.74 | 2022.34 | 2 | z |  |


| STF1523 AB | 1118.2 | +3132 | 0.5 | 147.9 | 2.24 | 2021.27 | 2 | Alz | note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | 0.5 | 142.7 | 2.30 | 2022.34 | 2 | Alz |  |
| STF1527 | 1119.0 | +1416 | 1.0 | 314.4 | 0.62 | 2022.34 | 2 | Alz |  |
| STT235 | 1132.3 | $+6105$ | 1.3 | 51.8 | 0.93 | 2021.24 | 2 | Alz |  |
| STF1555 | 1136.3 | $+2747$ | 0.1 | 149.0 | 0.70 | 2021.25 | 3 | Alz |  |
|  |  |  | 0.1 | 150.7 | 0.71 | 2022.35 | 3 | Alz |  |
| BU602 | 1146.8 | +1500 |  | panion n | seen) | 2021.32 | 1 | Alz |  |
| BU794 | 1153.7 | +7345 | 1.1 | 79.0 | 0.55 | 2021.27 | 2 | Alz |  |
| STF1606 | 1210.8 | +3953 | 0.6 | 137.4 | 0.68 | 2022.34 | 2 | Alz |  |
| STF1639 | 1224.4 | +2535 | 1.0 | 323.3 | 1.88 | 2022.39 | 2 | Alz |  |
| STT251 | 1229.1 | +3123 | 0.8 | 60.8 | 0.80 | 2021.31 | 2 | Alz |  |
|  |  |  | 0.8 | 62.2 | 0.74 | 2022.38 | 2 | Alz |  |
| STF1668 | 1240.9 | $+0850$ | 0.5 | 187.4 | 1.06 | 2021.32 | 1 | Alz |  |
|  |  |  | 0.5 | 184.7 | 1.05 | 2022.38 | 2 | Alz |  |
| STF1670 | 1241.7 | -0127 | -0.1 | 355.4 | 3.05 | 2021.36 | 3 | Alz |  |
|  |  |  | 0.0 | 353.7 | 3.17 | 2022.37 | 5 | Alz |  |
| STF1687 AB | 1253.3 | +2114 | 1.4 | 205.4 | 1.22 | 2021.27 | 1 | Alz |  |
|  |  |  | 2.0 | 204.6 | 1.11 | 2022.38 | 1 | Alz |  |
| MET9 | 1254.7 | +2206 |  | too fain |  | 2021.27 | 1 | Alz |  |
| STT261 | 1312.0 | +3205 | 0.1 | 337.7 | 2.58 | 2022.40 | 3 | Alz |  |
| STF1734 | 1320.7 | +0257 | 0.6 | 173.0 | 1.11 | 2022.40 | 3 | Alz |  |
| STF1742 | 1324.3 | +0124 | 0.4 | 0.0 | 0.95 | 2022.39 | 2 | Alz |  |
| STT266 | 1328.4 | +1543 | 0.3 | 358.0 | 1.97 | 2022.39 | 3 | Alz |  |
| STF1757 | 1334.3 | -0019 | 1.1 | 146.9 | 1.54 | 2022.40 | 3 | Alz |  |
| STF1781 | 1346.1 | +0507 | 0.7 | 199.0 | 1.08 | 2022.40 | 3 | Alz |  |
| STF1819 | 1415.3 | +0308 | 0.1 | 152.8 | 0.91 | 2022.41 | 5 | Alz |  |
| STF1834 | 1420.3 | +4831 | 0.1 | 104.7 | 1.72 | 2022.41 | 3 | Alz |  |
| STF1865 | 1441.1 | +1344 |  | round |  | 2021.45 | 2 | Alz |  |
| STF1877 | 1445.0 | +2704 | 2.4 | 345.1 | 2.84 | 2021.13 |  | Alz |  |
|  |  |  | 2.5 | 344.9 | 2.83 | 2022.43 | 4 | Alz |  |
| STF1888 | 1451.4 | +1906 | 2.3 | 295.2 | 5.08 | 2021.45 | 2 | Alz |  |
|  |  |  | 1.9 | 293.7 | 5.01 | 2022.46 | 2 | Alz |  |
| STT287 | 1451.5 | +4456 | -0.1 | 8.3 | 0.54 | 2021.45 | 2 | Alz |  |
| STF1909 | 1503.8 | +4739 | - | 172.6: | 0.23 | 2021.45 | 2 | Alz | note |
|  |  |  | 0.8 | 195.1 | 0.29 | 2022.43 | 3 | Alz |  |
| STF1926 | 1514.9 | +3818 | - | 191.6 | elong.? | 2022.44 | 1 | Alz |  |
| STT295 | 1515.0 | $+3649$ |  | round |  | 2021.45 | 2 | Alz |  |
| STF1937 | 1523.2 | +3017 | 0.5 | 316.0 | 0.36 | 2021.45 | 2 | Alz |  |
|  |  |  | 0.3 | 331.6 | 0.50 | 2022.44 | 2 | Alz |  |
| STF1938 BC | 1524.5 | +3723 | 0.5 | 1.5 | 2.22 | 2022.45 | 4 | Alz |  |
| HU149 | 1524.6 | +5413 | 0.0 | 271.0 | 0.69 | 2022.44 | 2 | Alz |  |
| STF1944 | 1527.7 | +0605 | 0.6 | 289.0 | 0.65 | 2022.44 | 3 | Alz |  |
| STF1954 | 1534.8 | +1032 | 1.4 | 170.5 | 4.04 | 2022.45 | 3 | Alz |  |
| STF1985 | 1555.9 | -0210 | 1.5 | 354.6 | 5.94 | 2022.45 | 1 | Alz |  |
| STT303 | 1600.9 | +1316 | 0.4 | 174.0 | 1.66 | 2021.47 | 2 | Alz |  |
|  |  |  | 0.4 | 174.1 | 1.65 | 2022.46 | 2 | Alz |  |
| STF2052 | 1628.9 | +1825 | 0.2 | 117.2 | 2.48 | 2022.52 |  | Alz |  |
| STF2055 | 1630.9 | +0159 | 1.1 | 48.8 | 1.35 | 2022.51 | 2 | Alz |  |
| STF2091 | 1642.2 | +4112 | - | 336.7 | 0.31 | 2021.46 | 3 | Alz |  |
| D15 | 1643.9 | +4329 | 0.2 | 318.9 | 0.65 | 2021.45 | 2 | Alz |  |
| STF2107 | 1651 | +28 | 1.5 | 107.5 | 1.44 | 2022.5 | 1 | Alz |  |


| STF2118 | 1656.4 | $+6502$ | 0.3 | 66.3 | 0.92 | 2022.54 | 2 | Alz | note |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STF2130 | 1705.3 | +5428 | 0.0 | 355.9 | 2.58 | 2022.55 | 3 | Alz |  |
| STF2161 | 1723.7 | +3708 | 1.1 | 320.1 | 3.99 | 2021.48 | 1 | Alz |  |
| STF2207 | 1737.1 | $+6707$ | 0.4 | 106.2: | 0.32 | 2022.19 | 3 | Alz |  |
| STF2199 | 1738.6 | +5546 | 0.7 | 53.2 | 2.08 | 2021.60 | 2 | Alz |  |
|  |  |  | 0.8 | 53.1 | 2.11 | 2022.56 | 1 | Alz |  |
| H 141 | 1739.7 | +7256 | 0.5 | 337.5 | 0.95 | 2022.54 | 2 | Alz |  |
| STF2218 | 1740.3 | +6341 | 1.3 | 305.9 | 1.49 | 2022.54 | 1 | Alz |  |
| STF2215 | 1747.1 | +1742 | 1.2 | 245.4 | 0.48 | 2022.56 | 1 | Alz |  |
| STT349 | 1753.0 | +8354 | 0.5 | 49.2 | 0.55 | 2022.54 | 2 | Alz |  |
| AC15 | 1807.0 | +3034 | 3.8 | 337.7 | 1.55 | 2022.56 | 1 | Alz |  |
| HU674 | 1809.7 | +5024 | 0.7 | 210.6 | 0.78 | 2022.19 | 3 | Alz | note |
| STT353 | 1820.8 | +7120 | 1.3 | 262.6 | 0.57 | 2021.60 | 2 | Alz |  |
| STT363 | 1837.4 | +7741 | 0.3 | 339.6 | 0.66 | 2022.63 | 2 | Alz |  |
| STF2384 | 1838.4 | +6708 | 0.5 | 303.1 | 0.35 | 2022.54 | 2 | Alz |  |
| STF2382 AB | 1844.3 | +3940 | 0.7 | 344.0 | 2.21 | 2021.76 | 3 | Alz |  |
| STF2383 CD | 1844.4 | +3937 | 0.1 | 74.1 | 2.33 | 2021.76 | 3 | Alz |  |
| AG366 | 1858.1 | +4711 | 0.0 | 181.0 | 1.36 | 2022.76 | 2 | Alz |  |
| STT380 | 19426 | +1150 | 1.0 | 74.7 | 0.36 | 2021.74 | 2 | Alz |  |
| STF2579 <br> STT387 | 1945.0 | +4508 | 3.8 | 213.6 | 2.78 | 2022.76 | 2 | Alz |  |
|  | 1948.7 | +3519 | 0.5 | 92.4 | 0.49 | 2021.74 | 2 | Alz |  |
|  |  |  | 0.7 | 87.8 | 0.39 | 2022.78 | 2 | Alz | note |
| STF2583 | 1948.7 | +1148 | 0.6 | 104.4 | 1.44 | 2021.74 | 3 | Alz |  |
| HDS2828 | 1951.3 | +4723 | - | 162: | 0.26 | 2022.76 | 2,3 | Alz |  |
| DJU4 | 1953.5 | +2405 | 3.0 | 244.6 | 1.50 | 2021.74 | 2 | Alz |  |
| STF2606 | 1958.5 | +3317 | 0.7 | 144.8 | 0.68 | 2021.75 | 4 | Alz |  |
| STF2609 | 1958.6 | $+3807$ | 0.8 | 22.9 | 1.94 | 2021.75 | 4 | Alz |  |
| STT395 | 2002.2 | +2456 | 0.2 | 128.2 | 0.76 | 2021.76 | 5 | Alz |  |
|  |  |  | 0.1 | 127.2 | 0.74 | 2022.81 | 3 | Alz |  |
| STF2723 | 2044.9 | +1219 | 1.1 | 139.9 | 1.02 | 2021.76 | 2 | Alz |  |
| STT413 | 2047.4 | +3629 | 1.2 | 0.9 | 0.96 | 2021.76 | 3 | Alz |  |
| STT418 | 2054.8 | +3242 | 0.0 | 283.6 | 0.95 | 2021.76 | 3 | Alz |  |
| STF2783 | 2114.1 | +5818 | 0.2 | 348.9 | 0.68 | 2022.76 | 2 | Alz |  |
| AGC13 | 2114.8 | +3803 | 3 | 171.7 | 0.94 | 2022.76 | 2 | Alz |  |
| STT437 | 2120.8 | $+3227$ | 0.2 | 18.6 | 2.44 | 2021.77 | 1 | Alz |  |
|  |  |  | 0.3 | 19.2 | 2.49 | 2022.84 | 2 | Alz |  |
| BU688 | 2142.6 | +4103 | 0.3 | 197.1 | 0.41 | 2022.85 | 2 | Alz |  |
| STF2822 | 2144.1 | $+2845$ | 1.3 | 325.4 | 1.55 | 2022.82 | 4 | Alz |  |
| STF2843 | 2151.6 | +6545 | 0.3 | 151.3 | 1.30 | 2022.85 | 2 | Alz |  |
| STF2854 | 2204.4 | +1339 | 0.1 | 83.7 | 1.49 | 2022.84 | 2 | Alz |  |
| STF2881 | 2214.6 | $+2934$ | 0.4 | 74.9 | 1.31 | 2022.84 | 3 | Alz | note |
| STF2944 | 2247.8 | -0414 | 0.5 | 310.0 | 1.79 | 2022.88 | 2 | Alz |  |
| STF2950 | 2251.4 | +6142 | 1.1 | 269.8 | 1.06 | 2022.87 | 3 | Alz |  |
| STF3001 | 2318.6 | $+6807$ | 3.3 | 223.1 | 3.35 | 2022.89 | 1 | Alz |  |
| STF3017 | 2327.7 | +7406 | 0.8 | 18.5 | 1.22 | 2022.89 | 1 | Alz |  |

Table 2 - Notes to individual stars


WDS02433+0314=STF299. $\mathrm{P}=914, \mathrm{a}=5.60$. Orbital arc from 1830 to $2705, \Delta \mathrm{t}=5 \mathrm{y}$


WDS02433+0314=STF299. $\mathrm{P}=914, \mathrm{a}=5.60$. Normal places used for calculation, all in the 4th quadrant.

| Pair | ADS | Note |
| :---: | :---: | :---: |
| STF299 | 2080 | A first orbit (see above) was calculated by the author for this long period pair (IAU Comm. G1, Binary and Multiple Star Systems, Double Stars Information, Circular No. 209). Orbital elements are as follows: $\mathrm{P}=914 \mathrm{yrs}, \mathrm{a}=5^{\prime \prime} .6$, $\mathrm{i}=85^{\circ} .2$, node $(2000)=122^{\circ} .7, \mathrm{~T}=2046.7$, $\mathrm{e}=0.90$, omega $=274^{\circ} .7$. Ephemerides for epoch t: 2023.0: $300^{\circ} .0,1^{\prime \prime} .886,2024.0: 300^{\circ} .2,1^{\prime \prime} .849$, 2025.0: $300^{\circ} .3,1^{\prime \prime} .811,2026.0: 300^{\circ} .5,1^{\prime \prime} .772,2027.0: 300^{\circ} .6,1^{\prime \prime} .730$ |
| HDS509 |  | $0401.8+1000$ (no ADS designation) Very few measurements of AaAb since the Hipparcos discovery 1991 (HIP 18805). AB is the wide pair STT70, which I have seen several times but have not measured. The close pair was discovered 143 years after $A B$; since " $A B$ " denoted the wide pair, " $A a A b$ " is listed for the close. The main star is of spectral type B 5 V , so the motion is very slow. $\mathrm{AB}=$ STT70: $5^{m} .8-11^{m} .2, \rho=11^{\prime \prime}$ was measured in the 19th century among others 1848.52 by Otto Struve, 1879.03 by S.W. Burnham, and 1898.66 by W.J. Hussey, two of four times by the latter with the 36 -inch Lick refractor. AaAb was therefore too close at that time. |
| STT95 | 3672 | Jasinta's orbit (1996) predicts an increase in distance over the next few years, while Izmailov's solution (2019) predicts a slow decrease. The distance measurements of the last 30 years tend to follow the new calculation. |
| DA5 | 4002 | For AB , there is a rectilinear solution given by Hartkopf et al. (2012). |
| STF774 | 4263 | Orbital elements by W. Knapp, JDSO, Vol 17, No 4, October 19, 2021 |
| STF795 | 4390 | The orbit presented by Zirm in 2015 better represents the early 19th century measurements than Izmailov's 2019 solution as the latter calculation shows systematic positive residuals of the distances. |
| STT124 | 4562 | Baize's provisional orbit from 1988 fails as the distance continues to increase. W. Knapp has discussed this pair in JDSO, Vol17, No 4, October 19, 2021 but did not communicate orbital elements as he considers the pair 'most likely optical'. But Otto Struve obtained two consistent measurements in 1845 and 1846 with the companion in the 4 th quadrant. W.J. Hussey could not see it in 1899 with the 36 -inch Lick refractor and other observers recorded it single at the end of the 19th century, so this pair is likely physical moving in a high inclination orbit. |
| BU1008 | 4841 | Rectilinear solution given by Scardia et al. (2018) and by Hartkopf, Matson and Mason in LIN2 |
| STT520 | 5893 | Indeterminate orbit, very slow motion. |
| STF1165 | 6516 | The last positive measurement is from 2012 (WDS precise last) |
| A2473 | 7039 | Stars not separated, measurements at the limit of the 13-inch. Because of the low magnitude difference the quadrant of the 2022.23 measurement was indeterminate. |
| STF1338 | 7307 | Residuals have been calculated for three older orbits, all are listed in the WDS Master file database and for the latest orbit Sca2023 (IAU, Commission G1, Double Star Information Circular No. 209 (February 2023)). |
| STF1523 | 8119 | $\mathrm{AB}: \mathrm{P}=59.84$ yrs (Heintz 1996, grade 1) Aa-A: $\mathrm{P}=1.834$ yrs(Heintz 1996, grade 9$)$. Residuals have been calculated combining AB (Heintz 1996) and Aa-A (Heintz 1996). |
| STF1909 | 9494 | 2021 measurements uncertain. |
| STF2207 | 10690 | Measurements difficult, position angles scattered. |
| STF2384 | 11568 | Measurements with a large telescope are desirable. |
| HDS2828 |  | $1951.3+4723$ (no ADS no). Stars not separated. Measurements with a large telescope are desirable to confirm the increasing distance. |
| STF2881 | 15769 | Provisional orbit, growing residuals. |

Table 3-Residuals from known orbits or from rectilinear solutions

| Pair | Comp. | ADS | Residual(O-C) |  | Orbit | Date | Grade |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Period |
| :--- |
| $(\mathrm{yrs})$ |


| STF299 | 2080 | -0.6 | +0.05 | Alzner | 2023 | TBD | 914 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STF333 | 2257 | +0.3 | +0.02 | Rica Romero | 2012 | 4 | 1215,913 |
|  |  | +0.3 | +0.02 | Izmailov | 2019 | 4 | 710.5425 |
| STF367 | 2416 | -0.6 | +0.03 | RAO | 2014 | 3 | 753 |
|  |  | -1.0 | +0.02 | Kiyaeva | 2016 | 3 | 419.9 |
| STF460 |  | -0.9 | +0.02 | Izmailov | 2019 | 3 | 370.1079 |
| STT77 | 2963 | -5.8 | +0.11 | Scardia | 2003 | 3 | 372.42 |
|  | 3082 | +1.1 | -0.07 | Scardia | 1983 | 3 | 190.919 |
|  |  |  | -1.7 | -0.05 | Starikova | 1985 | 3 |


| STT159 | 5586 | +0.9 | +0.04 | Alzner | 2000 | 3 | 262 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| STF1037 | 5871 | -1.1 | +0.03 | Scardia | 2015 | 2 | 118.35 |
|  |  |  |  |  |  |  |  |
| STT520 |  | 5893 | +2.1 | +0.02 | PkO | 2018 | 5 |
| STF1110 | AB | 6175 | -0.1 | -0.03 | Docobo | 2014 | 3 |


| STT261 | 8814 | -0.5 | -0.06 | Izmailov | 2019 | 4 | 772.2055 |
| :--- | :---: | :---: | :---: | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  | 973.8333 |
| STF1734 | 8864 | +0.1 | +0.04 | Izmailov | 2019 | 4 | 949.2369 |
| STT266 | 8914 | -0.5 | 0.00 | Izmailov | 2019 | 4 | 344.128 |
| STF1757 | 8949 | -0.3 | -0.05 | Izmailov | 2019 | 3 | 253.7049 |
| STF1781 | 9019 | -0.9 | +0.02 | Izmailov | 2019 | 2 | 223.5 |
| STF1819 | 9182 | +0.4 | +0.03 | Scardia | $2012 b$ | 2 |  |
|  |  |  |  |  |  |  |  |
| STF1834 | 9229 | +1.2 | +0.07 | Hartkopf/Mason | 2015 | 3 | 413.4 |
| STF1888 | 9413 | +0.7 | 0.00 | Soderhjelm | 1999 | 2 | 151.6 |
|  |  | +0.8 | +0.03 |  |  |  |  |
|  |  |  | +0.2 | -0.14 | Izmailov | 2019 | 2 |


| STF2383 | CD | 11635 | +0.7 | -0.06 | Docobo | 2020 | 4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| AG366 | 11899 | -1.1 | +0.02 | WSI | 2021 | 5 | 1260.888 |
| STF2579 | 12880 | +0.1 | -0.01 | Izmailov | 2019 | 4 | 657.1722 |
| STT387 | 12972 | -0.4 | +0.05 | Mason | 2006 | 2 | 165 |
|  |  | -1.6 | -0.03 |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  |  | -0.1 | +0.06 | Josties/Mason | 2021 | 2 | 165.0 |
| DJU4 | --- | -2.4 | -0.04 |  |  |  |  |
| STF2606 | 13196 | -2.9 | +0.11 | Cvetkovic | 2008 | 5 | 615.25 |
| STT395 | 13277 | +0.3 | +0.04 | Zirm | 2015 | 4 | 455 |
|  |  |  |  |  | 2019 | 4 | 709.37 |
| STF2723 |  | -0.8 | +0.03 |  |  |  |  |
| STT413 | 14233 | -1.1 | +0.01 | Izmailov | 2019 | 4 | 782.1910 |
| STT418 | 14296 | +1.2 | +0.05 | Izmailov | 2019 | 4 | 800.7968 |
|  | 14421 | +0.6 | +0.02 | Zirm | 2013 | 4 | 787 |
| STF2783 |  | +0.6 | +0.02 | Izmailov | 2019 | 4 | 709.1513 |
| AGC13 |  |  |  |  |  |  |  |
| STT437 | 14784 | +0.6 | +0.03 | Zirm | 2014 | 4 | 1760 |
|  | 14787 | -0.9 | -0.08 | Muterspaugh | 2010 | 2 | 49.626 |
| BU688 | 14889 | +0.4 | -0.01 | Izmailov | 2019 | 4 | 1218.0962 |
|  |  | +0.7 | +0.03 |  |  |  |  |
| STF2822 | 15251 | -1.3 | -0.02 | Josties/Mason | 2018 | 3 | 106.9 |
| STF2881 |  |  |  |  |  |  |  |
| STF2944 | 15270 | +0.1 | +0.07 | Izmailov | 2019 | 3 | 692.0588 |
| STF2950 | 15769 | +5.0 | +0.11 | Izmailov | 2019 | 4 | 1345.3304 |
| STF3001 | 16270 | -0.1 | +0.05 | Zirm | 2007 | 4 | 1160.28 |
|  |  | +0.5 | -0.01 | Izmailov | 2019 | 4 | 602.8834 |
|  | 16317 | 0.0 | -0.01 | Zirm | 2015 | 4 | 804 |
|  |  |  |  |  |  | 2019 | 4 |

# MEASUREMENTS OF DOUBLE STARS WITH ROBOTIC TELESCOPES IN 2022 

André Debackère, Société Astronomique de France

e-mail: andredebackere@orange.fr


#### Abstract

These observations and measurements were made with the LCO Global Telescope Network. I have used the Gaia EDR3 catalogue since December 3rd, 2020 and the Gaia DR3 catalogue since June 13th, 2022. This is how I added the parallax of the components of each observed pairs when it is known, the $G$-band magnitude (specific to Gaia), and the precise coordinates of each component. The aim of this work is to measure the polar coordinates of the observed pairs but also to determine whether they are optical or physical couples. In the latter case, when the components have same parallax and if they have common proper motion within the errors, one can conclude their probable physicality.


## Explanation of Table 1

Col.1: WDS designation (based on 2000 coordinates)
Col.2: Discoverer \& Number
Col.3,4: Components and Gaia-EDR3 Absolute stellar parallax (mas) \& standard error of parallax (mas)
Cols.5-8: Gaia-EDR3 proper motion in RA direction (mas/yr), standard error of proper motion in right ascension direction (mas/yr), proper motion in declination direction (mas/yr), standard error of proper motion in declination direction (mas/yr)
Col.9: Mean date of observation (2022+)
Col.10: Number of Observations
Col.11: $\quad$ Position Angle ( ${ }^{\circ}$ )
Col 12: $\quad$ Error in PA $\left({ }^{\circ}\right)$
Col.13: Separation (")
Col.14: Error in separation (" )
Col.15: Mag. of star A (above); mag. of star B (below)
Col.16: Observatory code
Col.17: Notes

## Table 1: Measures

| 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $04192+2914$ | A | 2.4675 | 0.0245 | 6.573 | 0.032 | -6.425 | 0.023 | 0.920 | 2 | 238.28 | 0.96 | 2.722 | 0.036 | 11.5 | V38 |  |
|  | B | 2.4888 | 0.0206 | 6.537 | 0.026 | -6.417 | 0.019 |  |  |  |  |  |  | 12.2 |  |  |
| 04550 +3026 | A | 8.5430 | 0.0419 | 226.401 | 0.048 | -124.775 | 0.027 | 0.919 | 2 | 27.83 | 0.63 | 5.456 | 0.034 | 13.4 | T04 1 |  |
|  | B | 8.5249 | 0.0298 | 224.105 | 0.035 | -123.082 | 0.020 |  |  |  |  |  |  | 14.4 |  |  |
| $04552+3022$ | A | 0.7693 | 0.0312 | 2.769 | 0.041 | -2.787 | 0.024 | 0.919 | 2 | 22.65 | 0.01 | 27.748 | 0.177 | 11.3 | T04 2 |  |
|  | B | 6.3248 | 0.0490 | 3.748 | 0.059 | -24.298 | 0.035 |  |  |  |  |  |  | 11.7 |  |  |
| 06508+2927 | A | 4.6963 | 0.0185 | 12.436 | 0.021 | -24.910 | 0.018 | 0.929 | 2 | 20.62 | 0.64 | 6.481 | 0.181 | 10.5 | Z24 | 2 |
|  | B | 0.4231 | 0.0168 | 0.212 | 0.019 | -6.634 | 0.016 |  |  |  |  |  |  | 11.3 |  |  |
| 11079-7727 | A | 5.9195 | 0.1845 | -23.045 | 0.215 | 1.185 | 0.224 | 0.210 | 2 | 118.03 | 0.11 | 1.835 | 0.001 | 12.6 | E10 2 |  |
|  | B | 5.4906 | 0.0870 | -23.066 | 0.098 | 0.748 | 0.116 |  |  |  |  |  |  | 13.9 |  |  |  |
| 11083-7734 | A | 5.3381 | 0.0352 | -23.574 | 0.042 | 0.530 | 0.044 | 0.218 | 1 | 284.09 | 0.12 | 2.443 | 0.008 | 10.5 | E10 2 |  |
|  | B | 4.9792 | 0.2194 | -24.710 | 0.246 | -2.398 | 0.260 |  |  |  |  |  |  | 12.5 |  |  |  |



## Table 2: Catalogue names and positions

| Pair | Comp | EDR3 catalogue | EDR3 co-ordinates |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
| TVB 69 | A | 164857891549222400 | $041914.50+291423.1$ |
|  | B | 164857887255386240 | $041914.32+291421.6$ |
| LDS 5616 | A | 56912025954435840 | $045456.57+302536.5$ |
|  | B | 156912025956834432 | $045456.77+302541.3$ |
| KSA 30 | A | 156907902785833984 | $045510.16+302133.2$ |
|  | B | 156907907082740480 | $045510.98+302159.4$ |
| HDS 949 | A | 888443882447477760 | $065046.06+292711.3$ |
|  | B | 888443882447476992 | $065046.27+292717.2$ |
| AGE 3 | A | 5201155402038028672 | $110755.74-772725.5$ |
|  | B | 5201155406332032000 | $110756.24-772726.3$ |
| GHE 27 | A | 5201153035509861888 | $110815.50-773353.4$ |
|  | B | 5201153035509862784 | $110814.77-773352.8$ |
| KSA 51 | A | 5201152760634067712 | $110854.20-773211.7$ |
|  | B | 5201152790697913728 | $110856.26-773152.0$ |
| REP 20 | A | 5201154444259173632 | $110911.64-772913.1$ |
|  | B | 5201154444261256704 | $110911.76-772911.9$ |
| REP 20 | A | 5201154444259173632 | $110911.64-772913.1$ |
| REP 20 | C | 5201154444259359488 | $110912.94-772911.6$ |
|  | B | 201154444261256704 | $110911.76-772911.9$ |
|  | C | 5201154444259359488 | $110912.94-772911.6$ |

## Observatory codes

- MPC code V38:T0.40m, McDonald Observatory, Fort Davis, Texas, USA, LCO
- MPC code T04:T0.40m, Haleakala Observatory, Haleakala, Hawaii, LCO
- MPC code E10: FTS Faulkes Telescope South T2m, Siding Spring, Australia, LCO
- MPC code Z24: T1m, Teide Observatory, Tenerife, Canary islands, Spain, LCO


## Notes

1 - Physical pair (same parallax and common proper motion within the errors)
2 - Optical pair

## Explanation of Table 2

Col.1: usual name
Col.2,3: difference between our measures of $\theta\left({ }^{\circ}\right)$ and $\rho\left({ }^{\prime \prime}\right)$ called ' O ' and the oldest measures of $\theta\left(^{\circ}\right)$ and $\rho\left(^{\prime \prime}\right)$ listed into the WDS catalogue.
Col.4: date of the first reliable measure into the WDS catalogue.
Col.5: interval (in years) between the earlier reliable measures and our measures

## Table II: Residuals from the WDS

| Name | $(\mathrm{O}-\mathrm{WDS})^{\circ}$ | $(\mathrm{O}-\mathrm{WDS})^{\prime \prime}$ | Date | Interval(yrs) |
| :--- | :--- | :--- | :--- | :---: |
| TVB 69 | +0.28 | +0.022 | 2001 | 21 |
| LDS 5616 | -9.17 | -0.544 | 1960 | 62 |
| KSA 30 | +1.65 | -1.752 | 1954 | 68 |
| HDS 949 | +0.62 | +0.081 | 1991 | 31 |
| AGE 3 AB | +0.03 | -0.065 | 1994 | 28 |
| GHE 27 AB | -0.91 | +0.043 | 1989 | 33 |
| KSA 51 | +0.50 | -0.112 | 1996 | 26 |
| REP 20 AB | -4.78 | +0.154 | 1989 | 33 |
| REP 20 AC | -3.39 | +0.028 | 1989 | 33 |
| REP 20 BC | +12.8 | -0.45 | 1998 | 24 |

## Note in WDS

Daemen et al. (2013) derive component properties for REP 20 A , B and C as follows:

| Comp. | Spectral Type | Teff <br> (K) | $\begin{aligned} & \text { Luminosity } \\ & \mathrm{L}_{\odot} \end{aligned}$ | Age (million yrs) | Mass $M_{\odot}$ | Radius $\mathrm{R}_{\odot}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | $\mathrm{M} 2.5 \pm 0.5$ | $3490 \pm 70$ | $0.25 \pm 0.05$ | $2.7+0.7 /-0.5$ | $0.36 \pm 0.05$ | $1.37 \pm 0.03$ |
| B | $\mathrm{M} 2 \pm 0.5$ | $3560 \pm 70$ | $0.20 \pm 0.04$ | $4.0+1.3 /-0.8$ | $0.38 \pm 0.05$ | $1.17 \pm 0.02$ |
| The B component is also an SB1 (single lined spectroscopic binary) |  |  |  |  |  |  |
| C: | $\mathrm{M} 2.5 \pm 0.5$ | $3490 \pm 70$ | $0.14 \pm 0.03$ | $4.7+2.3 /-1.2$ | $0.34 \pm 0.05$ | $1.04 \pm 0.02$ |

This WDS note for components B and C gives possible common properties (spectral type, effective temperatures, luminosity, age, masses and radius) which are identical within the margin error for both components. This confirms the predicted binarity due to the identical parallaxes and common proper motions indicated above.

## References

Daemgen, S., Petr-Gotzens, M. G., Correia, S. et al., 2013, A\& A, 554, A43, 20.

## Acknowledgements

This research has made use of:

- the Washington Double Star Catalog maintained at the U.S. Naval Observatory.
- the VizieR catalogue access tool, CDS, Strasbourg, France. The original description of the VizieR service was published in A\&AS 143, 23
- the Gaia EDR3 Catalogue and the Gaia DR3 Cataloue
- the Reduc software
- the Wdstool data base

Special thanks to - Florent Losse, Reduc software
(http://www.astrosurf.com/hfosaf/uk/tdownload.html\#REDUC)

- David Chiron, Wdstool data base (http://wdstool.com/)
- Paul Roche, Faulkes Telescope project, Cardiff University


# PHOTOMETRIC AND ASTROMETRIC MEASUREMENTS FROM CCD IMAGES TAKEN IN 2022 WITH REMOTE TELESCOPES 

Wilfried R.A. Knapp, Vienna, Austria<br>email: wilfried.knapp@gmail.com \& www.sterngucker.eu

## Method

This article reports photometric and astrometric measurements obtained by processing CCD images taken in 2022 with the remote telescopes iT24 in Auberry, California and iT32 in Siding Spring, New South Wales, Australia with a $V$ filter.

The main focus is on precise measurement of visual magnitudes. The WDS catalogue contains currently (Mar 2023) about 155,500 objects. Approximately 50,000 of these are listed with singledigit magnitudes, which is indicative of estimates rather than accurate measurements, and over 16,000 objects are listed with magnitudes in the blue or red band (WDS codes $\mathrm{B} / \mathrm{K} / \mathrm{R} / \mathrm{I}$ ) and therefore require measurements in the $V$ band. The selected objects for this report are faint and wide pairs with the highest possible altitude during nights without Moon to eliminate atmospheric imaging effects as far as possible - so this is then a more or less random selection out of the mentioned 66,000 objects. This report covers about 260 such objects, including some WDS objects that happened to be by chance in close visual proximity to the selected targets.

The intention was, to take two or more images in different nights for all selected objects, but unfavourable imaging conditions often reduced this to a single image. The images were plate solved with Astrometrica using the Gaia DR2 catalogue with reference stars in the magnitude range of 8.5 to 16.5 for astrometric measurements (i.e. calculating theta and rho). In a second step the images were again plate solved with Astrometrica using the URAT1 catalog for objects in the northern skies and the UCAC4 catalog for objects in the southern skies for photometry in the visual band. The objects were located in the centre of the image and astrometry/photometry was done by the rather comfortable Astrometrica procedure with point and click at the components delivering RA/Dec coordinates and $V$ mag measurements based on all reference stars used for plate solving. The error range of the reported visual magnitudes is calculated from the average plate solving $V$ mag error of the image and the signal-to-noise ratio of the components. The error ranges for separation and position angle of the components are calculated from the average plate solving RA/Dec position errors.

## Results

Table 1: Results for measured WDS objects

| WDS_ID | Date | $\mathrm{PA}\left(^{\circ}\right)$ | $\mathrm{e}_{-} \mathrm{PA}$ | $\operatorname{Sep}\left(^{\prime \prime}\right)$ | $\mathrm{e}_{-} \operatorname{Sep}$ | $M_{1}$ | $\mathrm{e}_{-} M_{1}$ | $M_{2}$ | $\mathrm{e}_{-} M_{2}$ | N |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $07597-3324$ | 2022.07566 | 183.540 | 0.689 | 5.88122 | 0.07071 | 12.063 | 0.070 | 13.998 | 0.072 | 1 |
| $08147-3051$ | 2022.10421 | 222.963 | 0.890 | 5.47961 | 0.08515 | 10.155 | 0.070 | 12.644 | 0.075 | 2 |
| $08151-2819$ | 2022.10427 | 173.084 | 0.547 | 9.26742 | 0.08852 | 10.527 | 0.065 | 11.383 | 0.065 | 1 |
| $08171-2704$ | 2022.47459 | 148.071 | 0.726 | 6.16236 | 0.07810 | 14.303 | 0.080 | 14.521 | 0.086 | 1 |
| $08205-3411$ | 2022.10424 | 261.869 | 1.048 | 4.63862 | 0.08485 | 10.615 | 0.060 | 12.278 | 0.066 | 2 |
|  |  |  |  |  |  |  |  |  |  |  |
| $08220-3358$ | 2022.10424 | 138.049 | 1.297 | 3.74888 | 0.08485 | 11.024 | 0.061 | 12.208 | 0.063 | 2 |
| $08225-3024$ | 2022.10430 | 124.084 | 0.680 | 7.45963 | 0.08852 | 10.875 | 0.060 | 11.242 | 0.060 | 2 |
| $08243-3329$ | 2022.10558 | 203.519 | 0.739 | 5.48571 | 0.07071 | 10.229 | 0.060 | 10.902 | 0.060 | 1 |
| $08246-3240$ | 2022.10438 | 174.753 | 1.738 | 3.03775 | 0.09220 | 12.339 | 0.060 | 12.695 | 0.061 | 2 |
| $08248-3240$ | 2022.10438 | 49.535 | 0.325 | 16.25620 | 0.09220 | 12.013 | 0.060 | 12.462 | 0.060 | 2 |
|  |  |  |  |  |  |  |  |  |  |  |
| $08253-3340$ | 2022.10558 | 23.189 | 1.869 | 2.60006 | 0.08485 | 12.173 | 0.061 | 12.308 | 0.061 | 1 |

$\left.\begin{array}{llllllllllll}08254-3249 & 2022.10440 & 177.172 & 0.456 & 11.11855 & 0.08852 & 12.734 & 0.060 & 11.779 & 0.060 & 2 \\ 08254-3546 & 2022.09472 & 145.553 & 0.836 & 5.49710 & 0.08034 & 11.101 & 0.067 & 12.239 & 0.067 & 3 & \\ 08267-2658 & \text { AB } & 2022.07566 & 177.970 & 1.693 & 2.64166 & 0.07810 & 9.502 & 0.070 & 12.893 & 0.071 & 1 \\ 08267-2658 & \text { AC } & 2022.07566 & 103.193 & 0.475 & 9.42010 & 0.07810 & 9.502 & 0.070 & 16.909 & 0.176 & 1\end{array}\right)$

| 10256-3449 |  | 2022.19044 | 111.554 | 0.341 | 13.52327 | 0.08032 | 15.313 | 0.058 | 15.904 | 0.060 | 3 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 10258-3412 | AB | 2022.16017 | 10.519 | 0.386 | 12.60226 | 0.08485 | 10.812 | 0.055 | 11.051 | 0.055 | 2 |  |
| 10258-3412 | BC | 2022.16017 | 4.896 | 0.213 | 22.81860 | 0.08485 | 11.051 | 0.055 | 12.910 | 0.055 | 2 |  |
| 10287-3206 |  | 2022.20969 | 303.184 | 0.197 | 26.81274 | 0.09220 | 14.654 | 0.051 | 14.955 | 0.051 | 2 |  |
| 10297-3249 |  | 2022.20138 | 323.385 | 0.583 | 7.31324 | 0.07438 | 14.154 | 0.050 | 16.042 | 0.054 | 2 |  |
| 10298-3618 |  | 2022.16015 | 58.410 | 0.205 | 23.67211 | 0.08485 | 10.130 | 0.060 | 14.583 | 0.061 | 1 |  |
| 10307-3422 |  | 2022.16014 | 289.977 | 0.263 | 20.05048 | 0.09220 | 10.019 | 0.060 | 14.867 | 0.061 | 1 |  |
| 10329-3459 |  | 2022.24252 | 113.479 | 0.141 | 17.24316 | 0.04243 | 11.639 | 0.050 | 16.765 | 0.057 | 1 |  |
| 10341-3107 |  | 2022.16018 | 255.881 | 0.791 | 5.12434 | 0.07071 | 11.064 | 0.051 | 11.584 | 0.050 | 1 |  |
| 10355-2941 |  | 2022.20968 | 36.140 | 0.981 | 5.16979 | 0.08852 | 13.545 | 0.061 | 13.574 | 0.061 | 2 |  |
| 10357-2606 |  | 2022.25916 | 197.547 | 0.751 | 7.55135 | 0.09899 | 14.661 | 0.071 | 16.893 | 0.079 | 1 |  |
| 10372-3356 |  | 2022.22153 | 61.677 | 0.565 | 10.04328 | 0.09899 | 15.061 | 0.058 | 15.145 | 0.058 | 3 |  |
| 10406-3257 |  | 2022.20966 | 271.536 | 0.654 | 6.52904 | 0.07438 | 11.854 | 0.050 | 13.736 | 0.051 | 2 |  |
| 10445-2801 |  | 2022.22151 | 13.691 | 0.023 | 96.91452 | 0.08032 | 13.834 | 0.054 | 16.686 | 0.059 | 3 |  |
| 10451-2757 |  | 2022.22151 | 280.792 | 0.723 | 6.36705 | 0.08032 | 13.242 | 0.054 | 13.779 | 0.054 | 3 |  |
| $10457+3949$ |  | 2022.15705 | 38.400 | 0.776 | 16.19249 | 0.21932 | 11.833 | 0.111 | 13.156 | 0.117 | 1 |  |
| 10459-3634 |  | 2022.25908 | 121.006 | 1.080 | 4.89190 | 0.09220 | 13.424 | 0.050 | 15.242 | 0.055 | 1 |  |
| 10480-3401 |  | 2022.25077 | 218.405 | 0.408 | 9.94719 | 0.07071 | 10.877 | 0.060 | 13.061 | 0.060 | 2 |  |
| 10490-3428 |  | 2022.24246 | 293.876 | 0.366 | 8.84472 | 0.05657 | 13.227 | 0.050 | 14.205 | 0.050 | 1 |  |
| 10504-3111 |  | 2022.25917 | 286.618 | 0.513 | 11.04921 | 0.09899 | 10.556 | 0.060 | 17.561 | 0.104 | 1 | 3) |
| 10513-2624 |  | 2022.25906 | 321.254 | 0.954 | 5.53896 | 0.09220 | 12.439 | 0.051 | 13.705 | 0.054 | 1 |  |
| 10515-3019 |  | 2022.25912 | 267.819 | 0.515 | 10.25016 | 0.09220 | 11.292 | 0.060 | 12.553 | 0.060 | 1 |  |
| $10553+3419$ |  | 2022.22805 | 186.928 | 0.313 | 14.27424 | 0.07810 | 11.348 | 0.050 | 12.594 | 0.050 | 1 |  |
| 10565-3209 |  | 2022.25913 | 94.459 | 0.309 | 17.10690 | 0.09220 | 12.327 | 0.060 | 15.873 | 0.062 | 1 |  |
| 10572-3322 |  | 2022.25913 | 9.125 | 0.495 | 10.66497 | 0.09220 | 12.613 | 0.060 | 13.524 | 0.060 | 1 |  |
| 10587-3520 |  | 2022.25914 | 83.551 | 0.360 | 14.69036 | 0.09220 | 12.431 | 0.050 | 13.377 | 0.050 | 1 |  |
| 10591-3244 |  | 2022.25915 | 70.223 | 0.392 | 13.47706 | 0.09220 | 13.500 | 0.050 | 16.691 | 0.056 | 1 |  |
| $11015+3816$ |  | 2022.22812 | 1.514 | 0.124 | 19.61685 | 0.04243 | 11.953 | 0.030 | 15.104 | 0.032 | 1 |  |
| 11035-3245 |  | 2022.25915 | 345.422 | 0.547 | 10.37401 | 0.09899 | 11.564 | 0.060 | 14.008 | 0.060 | 1 |  |
| 11071-3154 |  | 2022.24247 | 248.508 | 0.492 | 4.94040 | 0.04243 | 10.967 | 0.050 | 12.686 | 0.051 | 1 |  |
| $11072+3204$ |  | 2022.22816 | 77.929 | 0.104 | 23.28787 | 0.04243 | 12.377 | 0.030 | 13.000 | 0.030 | 1 |  |
| $11091+4231$ | AB | 2022.22807 | 267.225 | 0.086 | 14.86921 | 0.02236 | 13.055 | 0.050 | 13.569 | 0.050 | 1 |  |
| 11091+4231 | AC | 2022.22807 | 5.269 | 0.043 | 29.62515 | 0.02236 | 13.055 | 0.050 | 15.977 | 0.054 | 1 |  |
| 11091+4231 | AD | 2022.22807 | 238.106 | 0.028 | 45.19882 | 0.02236 | 13.055 | 0.050 | 15.630 | 0.052 | 1 |  |
| $11131+4011$ |  | 2022.23095 | 138.938 | 0.046 | 31.54147 | 0.02532 | 10.513 | 0.030 | 10.647 | 0.030 | 2 |  |
| $11140+3635$ |  | 2022.22815 | 61.016 | 0.105 | 23.05148 | 0.04243 | 11.919 | 0.030 | 16.901 | 0.050 | 1 |  |
| $11141+3926$ |  | 2022.23372 | 49.503 | 0.065 | 31.92042 | 0.03606 | 16.260 | 0.044 | 17.028 | 0.064 | 1 |  |
| $11152+3521$ | AB | 2022.22811 | 137.852 | 0.043 | 18.91003 | 0.01414 | 13.738 | 0.021 | 14.170 | 0.021 | 1 |  |
| $11152+3521$ | AC | 2022.22811 | 352.625 | 0.043 | 18.87613 | 0.01414 | 13.738 | 0.021 | 15.213 | 0.023 | 1 |  |
| $11152+3628$ |  | 2022.22815 | 280.669 | 0.037 | 21.98393 | 0.01414 | 13.105 | 0.030 | 15.157 | 0.032 | 1 |  |
| $11187+3759$ |  | 2022.23096 | 343.789 | 0.031 | 33.57992 | 0.01825 | 11.293 | 0.025 | 11.766 | 0.025 | 2 |  |
| $11202+3426$ |  | 2022.23094 | 68.776 | 0.091 | 26.66964 | 0.04243 | 11.969 | 0.030 | 16.888 | 0.050 | 2 |  |
| $11246+3752$ |  | 2022.22808 | 29.424 | 0.176 | 16.26847 | 0.05000 | 10.775 | 0.030 | 10.818 | 0.030 | 1 |  |
| 11248+4128 | AB | 2022.22809 | 278.970 | 0.177 | 17.44478 | 0.05385 | 10.683 | 0.040 | 13.850 | 0.040 | 1 |  |
| $11248+4128$ | AC | 2022.22809 | 210.821 | 0.067 | 46.21797 | 0.05385 | 10.683 | 0.040 | 12.833 | 0.040 | 1 |  |
| $11266+3946$ |  | 2022.22817 | 293.910 | 0.033 | 24.42626 | 0.01414 | 11.595 | 0.030 | 11.749 | 0.030 | 1 |  |
| $11280+3403$ |  | 2022.22814 | 88.579 | 0.059 | 21.77811 | 0.02236 | 11.535 | 0.030 | 12.262 | 0.030 | 1 |  |
| $11281+3940$ |  | 2022.23093 | 92.498 | 0.093 | 26.04274 | 0.04243 | 10.689 | 0.040 | 13.402 | 0.040 | 2 |  |
| $11401+3758$ |  | 2022.22810 | 196.331 | 0.131 | 18.54837 | 0.04243 | 12.229 | 0.030 | 16.231 | 0.036 | 1 |  |
| $11403+3750$ |  | 2022.22810 | 347.212 | 0.286 | 8.51110 | 0.04243 | 12.360 | 0.030 | 12.033 | 0.030 | 1 |  |
| $11414+3624$ |  | 2022.32127 | 171.251 | 0.323 | 11.35209 | 0.06403 | 11.754 | 0.050 | 14.602 | 0.057 | 1 |  |

$11507+3312$ $11512+3708$

11538-3348
11559-3005
$11567+3201$
$11577+3206$
$11580+3230$

11582-3421
$12003+4124$
12007-3247
$12010+4058$
12032-3637

12041-3531
12056-3237
12057-3237
12062-3459
12071-2830
$12083+4153$
$12093+3031$
12093-3316
12107-3604
12110-2702
$12133+3013$
12169-2942
12191-2726
$12197+3000$
$12198+3523$

12226-3103
12239-2812
$12247+4116$
12271-2726
$12308+3640$
$12322+3148$
12332-3427
12340-2725
$12381+4155$
$12397+3714$
$12400+4102$
$12406+3444$
$12424+3653$
12454-3054
12456-3059

12461-3105
$13276+3105$
$13303+4024$
$13304+4010$
$13309+4419$
$13340+4354$
$13359+4048$
$13426+3701$
$13455+3643$
$\begin{array}{llllllllll}2022.32119 & 106.064 & 0.435 & 7.44463 & 0.05657 & 12.208 & 0.020 & 12.354 & 0.021 & 1\end{array}$ $2022.32113-16.573-1.254-4.56985-0.10000-11.910-0.080-15809-0.130-1$

| 2022.32113 | 16.573 | 1.254 | 4.56985 | 0.10000 | 11.910 | 0.080 | 15.809 | 0.130 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |  |  |  |
| 2022.33021 | 208.898 | 0.525 | 10.80549 | 0.09899 | 12.180 | 0.050 | 14.671 | 0.051 | 1 |
| 2022.33018 | 266.929 | 0.724 | 7.83850 | 0.09899 | 11.918 | 0.060 | 13.575 | 0.061 | 1 |
| 2022.32122 | 177.763 | 0.597 | 8.14621 | 0.08485 | 13.654 | 0.041 | 14.209 | 0.042 | 1 |
| 2022.32130 | 131.175 | 0.709 | 13.03250 | 0.16125 | 13.406 | 0.059 | 14.277 | 0.075 | 1 |
| 2022.32120 | 18.082 | 0.492 | 7.45834 | 0.06403 | 13.342 | 0.041 | 14.114 | 0.041 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 2022.33027 | 7.236 | 0.660 | 6.78404 | 0.07810 | 15.551 | 0.052 | 17.074 | 0.063 | 1 |
| 2022.32124 | 60.289 | 0.404 | 11.07693 | 0.07810 | 11.195 | 0.060 | 12.267 | 0.060 | 1 |
| 2022.33028 | 103.826 | 0.517 | 8.66185 | 0.07810 | 15.535 | 0.062 | 16.305 | 0.063 | 1 |
| 2022.32115 | 63.932 | 0.825 | 5.00636 | 0.07211 | 14.055 | 0.061 | 14.986 | 0.065 | 1 |
| 2022.33021 | 167.190 | 0.624 | 8.47084 | 0.09220 | 13.420 | 0.060 | 14.406 | 0.061 | 1 |


| 2022.33029 | 301.700 | 0.422 | 8.69705 | 0.06403 | 16.009 | 0.053 | 16.512 | 0.055 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33023 | 251.156 | 0.358 | 14.73718 | 0.09220 | 13.965 | 0.050 | 13.915 | 0.050 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33023 | 21.958 | 0.379 | 13.91983 | 0.09220 | 15.382 | 0.052 | 18.169 | 0.142 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33026 | 206.347 | 0.582 | 9.08355 | 0.09220 | 15.481 | 0.052 | 16.624 | 0.056 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33030 | 57.298 | 0.322 | 15.08534 | 0.08485 | 16.275 | 0.055 | 17.309 | 0.063 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.47465 | 65.132 | 0.443 | 11.91365 | 0.09220 | 12.085 | 0.041 | 14.732 | 0.059 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.32122 | 43.398 | 0.473 | 7.74841 | 0.06403 | 11.882 | 0.050 | 13.571 | 0.051 | 1 |
| 2022.33019 | 54.753 | 0.308 | 17.15485 | 0.09220 | 12.313 | 0.060 | 13.991 | 0.060 | 1 |
| 2022.33024 | 305.176 | 0.908 | 5.81509 | 0.09220 | 14.445 | 0.061 | 15.099 | 0.062 | 1 |
| 2022.33019 | 282.731 | 0.698 | 8.12251 | 0.09899 | 12.580 | 0.070 | 14.294 | 0.072 | 1 |


| 2022.32121 | 177.079 | 0.481 | 7.62991 | 0.06403 | 10.993 | 0.040 | 11.907 | 0.040 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33020 | 199.344 | 0.869 | 6.52854 | 0.09899 | 13.519 | 0.061 | 13.670 | 0.061 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33017 | 139.634 | 0.369 | 15.35580 | 0.09899 | 10.920 | 0.060 | 11.410 | 0.060 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.0217 | 181.545 | 0.518 | 6.2628 | 0.05657 | 11.193 | 0.060 | 13.831 | 0.066 | 1 |


| 2022.32117 | 181.545 | 0.518 | 6.26228 | 0.05657 | 11.193 | 0.060 | 13.831 | 0.066 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.32116 | 295.433 | 1.612 | 5.72818 | 0.16125 | 12.487 | 0.060 | 15.732 | 0.077 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.33022 | 37.881 | 0.532 | 9.92037 | 0.09220 | 13.613 | 0.050 | 13.060 | 0.050 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.33015 | 272.544 | 0.300 | 16.22299 | 0.08485 | 10.596 | 0.060 | 15.354 | 0.062 | 1 |
| 2022.32125 | 233.752 | 0.978 | 10.89160 | 0.18601 | 12.035 | 0.050 | 14.819 | 0.055 | 1 |
| 2022.33016 | 59.135 | 0.562 | 8.65473 | 0.08485 | 11.912 | 0.061 | 11.959 | 0.061 | 1 |
| 2022.32114 | 173.551 | 1.051 | 5.14254 | 0.09434 | 11.463 | 0.071 | 11.928 | 0.072 | 1 |


| 2022.32123 | 311.226 | 0.384 | 10.56100 | 0.07071 | 13.560 | 0.051 | 15.158 | 0.054 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.33030 | 141.430 | 0.187 | 25.98944 | 0.08485 | 16.092 | 0.063 | 16.151 | 0.064 | 1 |
| 2022.33031 | 315.453 | 0.192 | 23.34880 | 0.07810 | 17.138 | 0.061 | 17.168 | 0.062 | 1 |
| 2022.32118 | 256.164 | 0.910 | 6.69042 | 0.10630 | 12.180 | 0.100 | 16.283 | 0.132 | 1 |
| 2022.32116 | 271.836 | 0.662 | 6.24096 | 0.07211 | 11.608 | 0.060 | 12.531 | 0.060 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 2022.32129 | 209.713 | 0.372 | 12.03203 | 0.07810 | 13.045 | 0.041 | 13.185 | 0.042 | 1 |
| 2022.32125 | 105.752 | 0.828 | 11.89802 | 0.17205 | 15.808 | 0.101 | 15.987 | 0.098 | 1 |
| 2022.32134 | 2.881 | 0.116 | 21.00655 | 0.04243 | 12.385 | 0.040 | 13.969 | 0.041 | 1 |
| 2022.33017 | 88.861 | 0.352 | 16.09126 | 0.09899 | 11.400 | 0.060 | 12.494 | 0.060 | 1 |
| 2022.33028 | 15.984 | 0.560 | 8.68580 | 0.08485 | 15.849 | 0.052 | 16.248 | 0.053 | 1 |


| 2022.33025 | 267.874 | 0.502 | 10.51536 | 0.09220 | 14.978 | 0.051 | 18.027 | 0.082 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.38968 | 221.980 | 0.300 | 9.56443 | 0.05000 | 14.023 | 0.041 | 14.457 | 0.041 | 1 |
| 2022.38975 | 46.703 | 0.215 | 17.06056 | 0.06403 | 16.636 | 0.058 | 16.699 | 0.055 | 1 |
| 2022.38975 | 210.668 | 0.518 | 7.08026 | 0.06403 | 15.829 | 0.044 | 17.106 | 0.061 | 1 |
| 2022.38967 | 93.898 | 0.102 | 20.30043 | 0.03606 | 13.587 | 0.031 | 14.327 | 0.031 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 2022.38965 | 31.500 | 0.502 | 8.23322 | 0.07211 | 11.174 | 0.030 | 14.239 | 0.032 | 1 |
| 2022.38963 | 309.597 | 0.194 | 20.86625 | 0.07071 | 11.510 | 0.040 | 13.905 | 0.041 | 1 |
| 2022.38972 | 293.593 | 0.235 | 19.01378 | 0.07810 | 11.996 | 0.050 | 15.757 | 0.054 | 1 |
| 2022.38973 | 38.372 | 0.568 | 7.88261 | 0.07810 | 16.355 | 0.056 | 16.446 | 0.055 | 1 |

$13483+3326$
$13510+3030$
$13531+3100$
$13537+4027$
$13550+3135$

14007-3053
$14025+3743$
14078-2621
$14095+3549$
$14098+3544$
$14103+4008$
$14111+3454$
14120-2234
$14123+3646$
14128-3754
14183-3149 $14230+3708$
14243-2200
14252-3112
14272-3251

14278-3231
14283-3425
14290-3040
14325-3102
14469-3636
14473-3634
14475-3030
14488-2857
$14516+3807$
14523-3424
$15043+3628$
$15124+3650$
16459-3205
16461-3140
16463-3006
16472-2733
16472-3301
16499-3603
16509-2758
16520-2640

16523-2640
16523-2641
16525-2642
16529-3718
16550-3715
$16554+4029$
$16555+3558$
$16558+3513$
$16586+3619$
16590-2610

| 2022.38970 | 178.235 | 0.655 | 5.60266 | 0.06403 |
| :--- | :--- | :--- | :--- | :--- |

$14.403 \quad 0.051$
17.880
$11.949 \quad 0.040 \quad 1$
$13.910 \quad 0.044 \quad 1$
$13.372 \quad 0.040 \quad 1$
$\begin{array}{lll}13.043 & 0.031 & 1 \\ 15.088 & 0.052 & 1\end{array}$
$13.721 \quad 0.062 \quad 1$
$16.966 \quad 0.057 \quad 1$
$12.291 \quad 0.061 \quad 1$
$10.037 \quad 0.030 \quad 1$
$14.359 \quad 0.032 \quad 1$

| 2022.38966 | 33.441 | 0.385 | 5.36875 | 0.03606 | 12.463 | 0.030 | 14.359 | 0.032 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{llllllllll}2022.38966 & 182.040 & 0.247 & 8.37531 & 0.03606 & 12.483 & 0.030 & 14.448 & 0.031 & 1\end{array}$ $\begin{array}{llllllllll}2022.38969 & 39.049 & 0.138 & 11.71750 & 0.02828 & 13.113 & 0.040 & 14.801 & 0.042 & 1\end{array}$ $\begin{array}{llllllllll}2022.33302 & 169.490 & 1.199 & 4.40389 & 0.09220 & 12.511 & 0.061 & 12.433 & 0.061 & 1\end{array}$

| 2022.38961 | 66.656 | 0.263 | 12.34079 | 0.05657 | 13.033 | 0.040 | 12.607 | 0.040 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllll}2022.33304 & 328.991 & 1.266 & 4.48029 & 0.09899 & 12.156 & 0.061 & 12.746 & 0.062 & 1\end{array}$
$\begin{array}{llllllllll}2022.33302 & 247.071 & 1.302 & 4.05548 & 0.09220 & 12.730 & 0.061 & 12.987 & 0.062 & 1\end{array}$ $\begin{array}{llllllllll}2022.38976 & 294.200 & 0.138 & 20.83292 & 0.05000 & 12.789 & 0.040 & 16.563 & 0.055 & 1\end{array}$ $\begin{array}{llllllllll}2022.33305 & 133.611 & 1.054 & 4.61031 & 0.08485 & 11.738 & 0.065 & 10.548 & 0.061 & 1\end{array}$ $\begin{array}{llllllllll}2022.12254 & 72.255 & 0.292 & 18.07866 & 0.09220 & 11.309 & 0.050 & 12.320 & 0.050 & 1\end{array}$ $\begin{array}{llllllllll}2022.12253 & 146.343 & 0.694 & 7.00407 & 0.08485 & 12.623 & 0.060 & 13.145 & 0.060 & 1\end{array}$
$\begin{array}{llllllllll}2022.12253 & 156.195 & 0.413 & 12.78792 & 0.09220 & 13.032 & 0.050 & 13.044 & 0.050 & 1\end{array}$ $\begin{array}{lllllllllll}2022.33299 & 267.438 & 1.389 & 3.80251 & 0.09220 & 11.914 & 0.061 & 11.985 & 0.060 & 1\end{array}$ $\begin{array}{llllllllll}2022.33299 & 111.248 & 1.293 & 4.08375 & 0.09220 & 11.041 & 0.051 & 11.329 & 0.051 & 1\end{array}$ $\begin{array}{llllllllll}2022.12255 & 79.259 & 0.434 & 12.18034 & 0.09220 & 15.632 & 0.052 & 16.410 & 0.054 & 1\end{array}$ $\begin{array}{lllllllllll}2022.33306 & 122.224 & 1.118 & 4.72590 & 0.09220 & 11.215 & 0.051 & 11.766 & 0.051 & 1\end{array}$

| 2022.33306 | 179.247 | 0.155 | 36.65317 | 0.09899 | 17.299 | 0.063 | 16.361 | 0.055 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.33307 | 191.303 | 1.097 | 4.81336 | 0.09220 | 11.503 | 0.060 | 12.491 | 0.061 | 1 |
| 2022.33300 | 264.504 | 1.367 | 3.86344 | 0.09220 | 12.280 | 0.050 | 12.547 | 0.050 | 1 |
| 2022.11929 | 323.156 | 0.169 | 24.85035 | 0.07317 | 11.057 | 0.040 | 16.920 | 0.061 | 3 |
| 2022.33301 | 97.334 | 1.249 | 4.23029 | 0.09220 | 10.684 | 0.060 | 11.991 | 0.063 | 1 |


| 2022.11926 | 333.362 | 0.352 | 10.80733 | 0.06627 | 15.701 | 0.044 | 16.637 | 0.055 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.11788 | 269.834 | 0.634 | 6.72503 | 0.07441 | 11.199 | 0.035 | 14.259 | 0.041 | 2 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.48080 | 85.664 | 0.269 | 12.03642 | 0.05657 | 12.406 | 0.060 | 12.582 | 0.060 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |


| 2022.48087 | 126.115 | 0.666 | 4.86925 | 0.05657 | 12.432 | 0.070 | 13.025 | 0.071 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

$\begin{array}{lllllllllll}2022.48079 & 204.214 & 0.732 & 4.42972 & 0.05657 & 10.889 & 0.060 & 10.993 & 0.060 & 1\end{array}$

| 2022.48081 | 313.431 | 0.563 | 5.09105 | 0.05000 | 12.749 | 0.060 | 12.578 | 0.060 | 1 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2022.48082 | 112.399 | 0.792 | 5.11736 | 0.07071 | 10.445 | 0.060 | 12.059 | 0.061 | 1 |
| 2022.48090 | 45.593 | 0.801 | 5.05896 | 0.07071 | 12.396 | 0.062 | 12.421 | 0.063 | 1 |
| 2022.48085 | 151.059 | 0.632 | 5.80492 | 0.06403 | 14.513 | 0.071 | 14.309 | 0.071 | 1 |
| 2022.48074 | 140.876 | 0.397 | 10.19618 | 0.07071 | 11.326 | 0.070 | 11.788 | 0.070 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 2022.48074 | 35.041 | 0.257 | 15.78045 | 0.07071 | 12.733 | 0.070 | 12.305 | 0.070 | 1 |
| 2022.48074 | 211.674 | 0.569 | 7.12057 | 0.07071 | 11.405 | 0.070 | 14.021 | 0.071 | 1 |
| 2022.48074 | 33.297 | 0.206 | 19.65698 | 0.07071 | 13.096 | 0.070 | 13.154 | 0.070 | 1 |
| 2022.48083 | 136.476 | 0.856 | 4.73049 | 0.07071 | 11.438 | 0.071 | 11.519 | 0.071 | 1 |
| 2022.48073 | 197.852 | 0.675 | 5.99881 | 0.07071 | 10.636 | 0.070 | 11.486 | 0.070 | 1 |
|  |  |  |  |  |  |  |  |  |  |
| 2022.47450 | 266.328 | 0.072 | 22.48596 | 0.02828 | 12.115 | 0.030 | 14.231 | 0.031 | 1 |
| 2022.47451 | 284.138 | 0.188 | 8.63835 | 0.02828 | 13.048 | 0.040 | 14.909 | 0.042 | 1 |
| 2022.47451 | 237.426 | 0.177 | 9.17568 | 0.02828 | 13.195 | 0.040 | 14.291 | 0.041 | 1 |
| 2022.47452 | 238.189 | 0.166 | 19.54041 | 0.05657 | 16.401 | 0.057 | 16.514 | 0.059 | 1 |
| 2022.48081 | 110.817 | 0.666 | 4.86807 | 0.05657 | 11.925 | 0.070 | 12.285 | 0.070 | 1 |


| 17005-2528 |  | 2022.48089 | 305.186 | 0.395 | 10.25641 | 0.07071 | 12.800 | 0.061 | 15.670 | 0.068 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $17029+3423$ |  | 2022.47453 | 233.183 | 0.073 | 22.32804 | 0.02828 | 15.901 | 0.047 | 16.756 | 0.067 |  |
| 17032-3247 |  | 2022.48085 | 47.598 | 0.544 | 5.96146 | 0.05657 | 12.658 | 0.070 | 12.153 | 0.070 |  |
| 17033-2439 |  | 2022.48078 | 141.339 | 0.871 | 4.64874 | 0.07071 | 12.245 | 0.071 | 12.463 | 0.070 |  |
| $17046+3900$ | AB | 2022.47454 | 232.511 | 0.265 | 6.11239 | 0.02828 | 10.912 | 0.040 | 11.569 | 0.040 |  |
| 17046+3900 | AC | 2022.47454 | 173.296 | 0.019 | 84.28654 | 0.02828 | 10.912 | 0.040 | 13.108 | 0.040 |  |
| $17046+3900$ | AD | 2022.47454 | 138.121 | 0.017 | 94.43752 | 0.02828 | 10.912 | 0.040 | 12.822 | 0.040 |  |
| $17051+3418$ |  | 2022.47455 | 22.920 | 0.393 | 8.24059 | 0.05657 | 12.003 | 0.040 | 14.805 | 0.043 |  |
| 17052-2602 |  | 2022.48075 | 218.550 | 0.863 | 4.69272 | 0.07071 | 11.251 | 0.070 | 11.479 | 0.070 |  |
| $17066+3215$ |  | 2022.47456 | 268.022 | 0.165 | 19.70057 | 0.05657 | 10.330 | 0.040 | 13.186 | 0.040 |  |
| $17076+3823$ |  | 2022.47456 | 219.564 | 0.215 | 15.09906 | 0.05657 | 12.189 | 0.040 | 12.748 | 0.040 |  |
| $17077+3337$ |  | 2022.47457 | 263.796 | 0.637 | 5.08908 | 0.05657 | 11.513 | 0.030 | 15.275 | 0.048 |  |
| $17079+3530$ |  | 2022.47458 | 182.210 | 0.512 | 6.33471 | 0.05657 | 12.939 | 0.040 | 14.055 | 0.041 |  |
| 17084-3155 |  | 2022.48084 | 276.524 | 0.868 | 4.66461 | 0.07071 | 11.445 | 0.070 | 12.538 | 0.072 |  |
| $17089+3647$ |  | 2022.47459 | 21.146 | 0.570 | 5.02861 | 0.05000 | 11.732 | 0.040 | 16.595 | 0.093 |  |
| $17092+3342$ |  | 2022.47459 | 218.492 | 0.184 | 8.80291 | 0.02828 | 11.480 | 0.040 | 12.152 | 0.040 |  |
| $17092+3648$ |  | 2022.47459 | 312.011 | 0.518 | 5.52833 | 0.05000 | 13.771 | 0.041 | 14.810 | 0.042 |  |
| $17093+3645$ |  | 2022.47459 | 63.001 | 0.524 | 5.46278 | 0.05000 | 14.175 | 0.041 | 14.850 | 0.042 |  |
| 17100-3641 |  | 2022.48079 | 358.226 | 0.802 | 5.05242 | 0.07071 | 12.289 | 0.060 | 12.37 | 0.061 |  |
| $17101+4130$ |  | 2022.47460 | 123.757 | 0.263 | 7.86437 | 0.03606 | 12.801 | 0.030 | 14.332 | 0.032 |  |
| $17104+3752$ |  | 2022.47461 | 266.799 | 0.339 | 7.16404 | 0.04243 | 13.183 | 0.040 | 15.355 | 0.045 |  |
| $17112+3314$ |  | 2022.47462 | 8.928 | 0.278 | 5.82052 | 0.02828 | 14.065 | 0.041 | 13.998 | 0.041 |  |
| $17112+3345$ |  | 2022.47462 | 81.471 | 0.421 | 6.80984 | 0.05000 | 13.326 | 0.040 | 14.250 | 0.041 |  |
| $17118+3406$ |  | 2022.47464 | 335.438 | 0.319 | 5.07963 | 0.02828 | 10.980 | 0.030 | 15.085 | 0.062 |  |
| $17145+3833$ |  | 2022.47465 | 187.096 | 0.289 | 5.60292 | 0.02828 | 13.253 | 0.050 | 13.723 | 0.051 |  |
| $17176+3532$ |  | 2022.47465 | 240.059 | 0.697 | 4.64824 | 0.05657 | 11.772 | 0.040 | 14.444 | 0.048 |  |
| $17177+3537$ |  | 2022.47465 | 279.736 | 0.403 | 8.04183 | 0.05657 | 9.296 | 0.040 | 12.385 | 0.041 |  |
| $17179+3533$ |  | 2022.47465 | 259.865 | 0.679 | 4.77340 | 0.05657 | 13.617 | 0.041 | 15.077 | 0.044 |  |
| 17193-2949 |  | 2022.48089 | 316.536 | 0.340 | 11.91783 | 0.07071 | 14.051 | 0.071 | 14.407 | 0.071 |  |
| $17262+3604$ |  | 2022.47467 | 99.766 | 0.140 | 11.61417 | 0.02828 | 15.706 | 0.046 | 16.826 | 0.065 |  |
| 17273-2759 |  | 2022.48087 | 59.732 | 0.810 | 4.99958 | 0.07071 | 13.938 | 0.070 | 16.148 | 0.080 |  |
| 17313-3327 |  | 2022.48075 | 84.954 | 0.869 | 4.66136 | 0.07071 | 11.588 | 0.050 | 12.496 | 0.050 |  |
| 17328-2856 |  | 2022.48088 | 38.937 | 0.165 | 22.26721 | 0.06403 | 13.332 | 0.060 | 14.158 | 0.061 |  |
| 17344-3421 |  | 2022.48077 | 110.508 | 0.668 | 4.85255 | 0.05657 | 11.317 | 0.070 | 12.913 | 0.070 |  |
| 17355-3009 |  | 2022.48076 | 76.968 | 0.711 | 6.29720 | 0.07810 | 9.850 | 0.070 | 11.830 | 0.070 |  |
| 17365-3212 |  | 2022.48086 | 253.399 | 0.665 | 4.30510 | 0.05000 | 12.589 | 0.060 | 13.010 | 0.061 |  |
| 18060-3018 |  | 2022.41538 | 267.172 | 0.651 | 8.71389 | 0.09899 | 11.622 | 0.070 | 15.902 | 0.095 |  |
| 18082-3127 |  | 2022.41541 | 60.629 | 1.441 | 3.93504 | 0.09899 | 10.873 | 0.072 | 12.022 | 0.090 |  |
| 18137-1410 |  | 2022.41533 | 317.255 | 1.117 | 5.07913 | 0.09899 | 11.200 | 0.070 | 11.772 | 0.071 |  |
| 18153-3413 |  | 2022.41538 | 12.198 | 1.208 | 4.69602 | 0.09899 | 12.164 | 0.071 | 12.669 | 0.072 |  |
| 18167-3047 |  | 2022.41537 | 183.738 | 1.304 | 4.34925 | 0.09899 | 12.489 | 0.081 | 12.593 | 0.082 |  |
| 18188-3325 |  | 2022.41534 | 204.648 | 1.138 | 4.98411 | 0.09899 | 12.435 | 0.070 | 12.646 | 0.070 |  |
| 18190-3357 |  | 2022.41539 | 67.311 | 1.420 | 3.99247 | 0.09899 | 9.592 | 0.050 | 10.496 | 0.054 |  |
| 18207-3245 |  | 2022.41534 | 350.879 | 1.273 | 4.45634 | 0.09899 | 10.952 | 0.070 | 11.868 | 0.071 |  |
| 18241-3058 |  | 2022.41536 | 130.402 | 1.059 | 5.35376 | 0.09899 | 13.981 | 0.071 | 14.042 | 0.071 |  |
| 18244-3054 |  | 2022.41536 | 249.053 | 1.200 | 4.72728 | 0.09899 | 11.809 | 0.060 | 13.186 | 0.060 |  |
| 18287-3017 |  | 2022.41540 | 162.226 | 1.087 | 5.21912 | 0.09899 | 10.485 | 0.090 | 10.485 | 0.091 |  |

## Explanation of table

| WDS_ID | WDS Designator |
| :--- | :--- |
| Comp | left justified component designator. If blank this is AB |
| Date | observation date in years |
| PA | position angle theta, in degrees |
| e_PA | formal theta error, in degrees |
| Sep | separation rho, in arcseconds |
| e_Sep | rho error, in arcseconds |
| $M_{1}$ | primary magnitude, in $V$ mag |
| $\mathrm{e}-M_{1}$ | primary magnitude error, in $V \mathrm{mag}$ |
| $M_{2}$ | secondary magnitude, in $V \mathrm{mag}$ |
| $\mathrm{e}-M_{2}$ | secondary magnitude error, in $V \mathrm{mag}$ |
| N | number of nights averaged into mean measure |
| Note | notes - see below |

## Notes

| 1. | 08267-2658 | DAM 471AC: | SNR C < 10 |
| :---: | :---: | :---: | :---: |
| 2. | $09561+2741$ | BRT 22: | WDS precise position wrong. Correct is $095620.36+274131.9$ |
| 3. | 10504-3111 | UC 2008: | SNR B<20 |
| 4. | $11414+3624$ | UC 2190: | Last WDS measurement erroneous |
| 5. | $11512+3708$ | NSN 50: | SNR B $<20$ |
| 6. | 12057-3237 | TSN 84: | SNR B <10 |
| 7. | $12381+4155$ | SKF2651: | SNR B $<20$ |
| 8. | $12406+3444$ | UC 2383: | SNR A and B $<20$ |
| 9. | 12461-3105 | UC 2403: | SNR B<20 |
| 10. | $13465+3443$ | CBL 597: | SNR B < 5 |
| 11. | 14120-2234 | BRT1490: | Similar parallax and proper motion suggest a physical pair. WDS note code " $T$ " suggested |
| 12. | $17089+3647$ | DAM 899: | SNR B <20 |
| 13. | $17177+3537$ | HO 67: | A likely brighter than $V=9.3$ (star disk saturated) |
| 14. | 17273-2759 | VVV 42: | Quadrant issue. Precise position is due to fast proper motion currently 172716.40-275923.8 |
| 15. | 18060-3018 | BRT3059: | Most likely false positive, spurious assumed. However, something is here. X-mark first measurement as erroneous |
| 16. | 18241-3058 | BRT3069: | False positive or wrong WDS position (correct would be 182407.50-305820.9). X-mark last WDS measurement as erroneous |

Three objects remained without measurements due to lack of resolution:
08155-2820 TDS5652: No resolution, not even hint of elongation. Spurious.
08170-2705 TDS5671: No hint of a double. Spurious.
$17200+3640$ LDS4739: No resolution. Secondary fainter than mag 17.

## Summary

About one third of the objects measured show the expected significant magnitude difference $>0.5$ compared to the WDS catalogue data, especially for the secondary but often also for the primary. For another third of the objects, the given WDS magnitudes are simply confirmed within the measurement error range and the rest is in between.

## Acknowledgements

The following tools and resources have been used for this research:
Washington Double Star Catalog
Gaia DR2 and DR3 catalog
UCAC4 and URAT1 catalog
Remote telescopes
iT24: 610mm CDK with 3962 mm focal length. Resolution 0.625 arcsec/pixel. V-filter. Located in Auberry, California. Elevation 1405m
iT32: 430mm CDK with 2912 mm focal length. Resolution 0.64 arcsec/pixel. V-filter. Located in Siding Spring, Australia. Elevation 1122m
Aladin Sky Atlas v11.0
AAVSO VPhot
Astrometrica v4.10.0.427
AstroPlanner v2.2
MAXIm DL6 v6.08

# UNCONFIRMED TYCHO DOUBLE STARS VERSUS GAIA DR3 - I 

Ross Gould, Canberra, ACT, Australia<br>e-mail: rgould1792@optusnet.com.au<br>and<br>Wilfried R.A. Knapp, Vienna, Austria<br>e-mail: wilfried.knapp@gmail.com \& //www.sterngucker.eu


#### Abstract

"Absence of evidence is not evidence of absence" is a well-known adage used to defend claims that something exists without providing substantive evidence. Such statements are of limited scientific value as falsification is difficult, if not impossible. On the other hand, a well-documented absence is sufficient reason to declare that something does not exist - this is a valid scientific statement, falsifiable by the mere proof of existence.

This report takes a closer look at a subset of 2,149 unconfirmed Tycho Double Stars (henceforth TDS/TDT objects) with angular separation $>1.45$ arcseconds based on the assumption that Gaia DR3 should resolve any such object with ease. With a combination of automatic cross-matching and manual checking of potential candidates we found 10 TDS/TDT objects confirmed with reasonable small differences between WDS Catalogue and Gaia DR3 data and 44 objects potentially confirmed with very generous allowances for significant data deltas. A further ten TDS/TDT objects are special cases that required some detective work to get conclusive results.

The remaining TDS/TDT objects are clearly spurious, with 655 cases of them with very faint Gaia DR3 companions outside the Tycho magnitude limit. However, 'something' acceptable as a visual double star exists here at these positions. The remaining 1,431 unconfirmed TDS/TDT objects are considered spurious due to a missing Gaia DR3 companion within a 5 arc second search radius.


## Method

The WDS Catalogue contained in September 2022 in total 14,173 TDS/TDT objects with 3,059 confirmed pairs (which means with two or more observations) and 339 marked with WDS note code ' X ', which means 'spurious' (we prefer this term, which indicates technical reasons, over the terms 'dubious' or 'bogus' used in the WDS Catalog, as these terms seem to imply an intention to mislead).

The remaining 10,776 of these TDS/TDT objects are still only listed with the initial measurement. This number includes four objects listed with a first observation after 1991/1992 for additional components to existing TDS/TDT pairs detected later.

Out of the 3,059 confirmed TDS/TDT pairs, 1,384 are listed with a separation range of $1^{\prime \prime} .45$ and above, which means $36 \%$ of the corresponding in total 3,851 TDS/TDT objects in this separation range. In contrast, only $16 \%$ of the pairs with a separation smaller than $1^{\prime \prime} .45$ are listed as confirmed. This bias towards the pairs with larger separation might be explained by the fact that such pairs are relatively easy to observe even with amateur equipment and for this reason well researched.

The basic idea for this work is the assumption that Gaia with a telescope aperture of 1.0 m should (together with the technological progress in the last 30 years) easily confirm any double star discovered by Tycho with a telescope aperture of 0.3 m . The TDS/TDT objects are listed in the WDS catalogue with an angular separation of 0.3 arcseconds or larger, magnitudes fainter than 7 and brighter than 15 and a magnitude delta of up to 3.3 . Gaia DR3 covers this range very well with a resolution limit of 0.18 arcseconds according to Torra et al. (2021). Even with the
caveat that this proposed resolution limit is a best-case scenario under favourable conditions, this means that virtually any TDS/TDT object has to be confirmed by Gaia DR3 to be considered as existing and that any such Tycho Double Star not confirmed by Gaia can be considered 'spurious'.

To stay on the very safe side regarding the Gaia resolution limit we restricted this research to the TDS/TDT objects with a separation of 1.45 arcseconds or more resulting in a total of 2,149 such objects. This separation range also allowed cross-checking with various sky surveys, particularly $2 M A S S$, where this level of resolution can be achieved. Checks against the WDS also revealed a number of cases where a TDS/TDT double was in fact a rediscovery of a previously known double, usually from many years earlier.

This data set was cross-matched with Gaia DR3 with a search radius of five arcseconds. Proper motion since 1991 should not give a noticeable large change in position or in separation to get a companion outside the search radius.

All objects without any Gaia DR3 companion after cross matching are clearly spurious due to evident absence of a secondary. Next step is the check of all objects with an existing potential companion for matching the values for separation, position angle and magnitudes. All objects with reasonably matching data are considered confirmed, all objects with unreasonably large data deltas are considered false positives as well as all objects with magnitudes outside the Tycho limit.

To verify the validity of this approach we decided to check this method, using a confirmed data set from the WDS catalogue with parameters similar to the selected set of TDS/TDT objects.

Additional checks were made against the WDS catalogue, to see if some Tycho pairs were rediscoveries of previously known doubles, some found much earlier in time than Tycho. A number of Tycho pairs proved to be re-discoveries of known doubles. This effort was complicated by the presence in the WDS of some doubles found by data-mining of general star catalogues of various types, including earlier than DR3 versions of Gaia.

Supplementary checks were done by Gould using sky survey images from various sources. The intention was to use these as a 'reality check', as some sky surveys had sufficient resolution to show doubles in the Tycho magnitude range, either as extended images or closely separated images, for many of the doubles listed by Tycho as having separations from $1^{\prime \prime} .45$ or wider. This figure, $1^{\prime \prime} .45$, represents an approximate resolution limit for sky survey images from 2MASS. Similarly, images generated by the SkyMapper (ANU) program of the Southern and part of the Equatorial zones of the sky, with the benefit of multi-wavelength images, were used. These sometimes showed need for further data checks; and sometimes simply confirmed data already to hand.

## Proof of concept

No star catalogue is error-free. This also applies to Gaia DR3 and the Gaia Consortium provides a list of known issues (https://www.cosmos.esa.int/web/gaia/dr3-known-issues). All measurements listed in the Gaia DR3 catalogue are given with indications for the reliability of the given data, not only in the form of measurement error range, but also in the form of a renormalized unit weight error value (RUWE). In addition, there are indications of a possible lack of reliability due to missing important data such as proper motion and parallax. Therefore, it seems necessary to assess the risk of erroneous Gaia catalogue data for the planned method.

Proof of concept for the presented method is done by cross matching a sample of confirmed WDS objects with a separation from $1^{\prime \prime} .45$ to $3^{\prime \prime}$ and with five or more observations against the Gaia DR3 Catalogue.

Out of 5,790 objects, three were completely missed in the cross-match results and 32 lacked a potential companion within the search radius of five arcseconds.

This means that $99.4 \%$ of the selected objects were attempted to be matched with potential secondaries. A closer look at the misses revealed that about half of these misses were due to magnitude and proper motion issues of no relevance for cross matching Gaia DR3 with TDS/TDT objects. However, in further 12 cases the cause for mis-hits are WDS catalogue data issues like
erroneous most recent observations and wrong precise positions (meanwhile cleared up by private communication with USNO).

In the next step, we checked the objects in more detail by calculating position angle and separation with Gaia DR3 data and comparing these values with the current WDS data. All objects with a delta of less than $15^{\circ}$ in position angle and less than $0^{\prime \prime} .2$ in separation were considered as confirmed by Gaia DR3 observation. Finally, we checked the 110 objects with larger deltas for the possible reasons. In seven cases proper motion issues caused significant changes since the last measurement (Appendix B, Table 6), 99 pairs were listed in the WDS catalogue with an imprecise last measurement (Appendix B, Table 7) and in two cases the currently WDS catalogue precise position is erroneous (Appendix B, Table 8). Additionally three objects popped up with obvious magnitude issues (Appendix B, Table 9). One object (WDS21522+3252, ES 2321) remains slightly questionable due to insufficient Gaia DR3 data regarding proper motion and magnitudes.

Overall, including manual checks, this reduces the error range of the selected procedure to $0.1 \%$. A likelihood of $99.9 \%$ for correct assessment is considered sufficient for an acceptable evidence of absence, especially if the referenced data set contains only a small number of positive objects, as is the case with the selected set of TDS/TDT pairs.

## Results for TDS/TDT objects

Beginning with Knapp \& Gould (2016) we made several attempts for cleaning up Tycho Double Star issues in the WDS Catalogue. The release of the 3rd Gaia source catalogue (Gaia Collaboration 2022) gives the basis for a next step.

The selected subset of 2,149 unconfirmed TDS/TDT objects with a separation of $1^{\prime \prime} .45$ or larger was cross-matched with the Gaia DR3 catalogue with a search radius of five arcseconds around the given WDS precise position with a hit rate of $100 \%$ for the primaries. This step was supplemented by a manual check of all objects with a separation larger than three arcseconds to avoid issues with the search radius of five arcseconds.

For 1,431 objects, we found simply no Gaia DR3 companion within the search radius of 5 arcseconds, which means spurious due to sufficient evidence of non-existence (Appendix A, Table 1). Suggested WDS catalogue update: Add WDS note code ' $X$ '.

For ten objects, we found fairly good matching Gaia DR3 pairs (Appendix A, Table 2). Magnitudes, separation and position angle of Gaia DR3 pairs at the given position are (with some allowances for the effects of proper motion since 1991) with a delta in position angle up to $\sim 30$ degrees and a delta in separation up to $\sim 0.8$ arcseconds close enough to WDS Catalogue data to be considered as genuine confirming observations. This number is modest compared with the overall confirmation rate of $36 \%$ in this group of TDS/TDT objects, which might be explained by the intense efforts already invested in the confirmation of these pairs over the last 30 years. Suggested WDS catalogue update: Add Gaia DR3 measure as the second observation. WDS note code 'T' for TDS2124 with similar parallax and proper motion.

Side note regarding the accuracy of Tycho measurements of doubles: Records of non-Tycho (not TDS nor TDT) doubles, where these were measured in the same era by Hipparcos and by speckle interferometry using large telescopes, show many examples where the Tycho measurements are not consistent with Hipparcos and speckle measures and where the two non-Tycho measures agree and are a better fit for the trend-line of change with the particular doubles.

For 44 objects, we found at the given position Gaia DR3 pairs potentially detectable by Tycho but with separation and position angle not even similar to the WDS data, and for this reason considered most likely false positives (Appendix A, Table 3). However, if we accept the TDS/TDT data as non-binding proposal then we can take these Gaia DR3 measurements as confirmations if the magnitude of the secondary is brighter than $G=15$. This magnitude limit to accept a Gaia DR3 companion as potential secondary is reasonably generous as the faintest TDS/TDT secondary is listed with visual magnitude 14.72 and $G$-band magnitudes should always be brighter than visual magnitudes. There are a few TDS/TDT objects listed with even fainter magnitudes but these are
all first observations not from Tycho. This gives together with the ten positive objects a meagre confirmation rate of $2.5 \%$ of the checked 2,149 objects. Suggested WDS Catalogue update: Either add Gaia DR3 measure as second observation or X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation.

For 650 objects, we found Gaia DR3 pairs with companions too faint by far to be detectable by Tycho and for two cases we found an unreasonably large separation delta, which means false positives for certain (Appendix A, Table 4). However, something has been found here and such pairs are valid visual double stars. The original Tycho measurement is obviously erroneous but a new first observation can be recorded, which could allow us to keep the corresponding TDS/TDT designations. In case of several components besides the primary, the brightest was selected as secondary for this purpose. Suggested WDS Catalogue update: X-mark TDS/TDT measure as erroneous and add Gaia DR3 measure as first observation.

Finally, ten objects are special cases that required some detective work to get conclusive results (Appendix A, Table 5):

> Pair TDS3375Aa,Ab: Gaia DR3 pair found at this position corresponds with RST 158AB. This is the third measurement for this neglected pair after 73 years without observation. No matching Gaia DR3 objects for TDS3375Aa,Ab available. Suggested WDS catalogue update: Add WDS note code ' $X$ ' for TDS3375Aa,Ab and add Gaia DR3 measurement  for RST 158AB

TDS5152AB: Seems with some allowances confirmed by a Gaia DR3 pair at this position. However, this is indeed the match for BRT2682AC. Gaia DR3 lists a third component without $G$ for a $158^{\circ}$ and $2^{\prime \prime} .49$ pair but the faint $R=16.75$ companion (no $G$ given) suggests spurious for TDS5152AB. Overall this could mean that the Tycho object is just a rediscovery of BRT2682 with the delta in theta and rho just another example of the usual Tycho measurement imprecision.
Suggested WDS catalogue update: X-mark the Tycho measurement for TDS5152AB as erroneous and add the Gaia DR3 observation with the $R=16.75$ component as first observation of that companion. Add the Gaia DR3 measurement for BRT2682AC

TDS5171AB: Possible match with Gaia DR3 $G=11.7+12.4$ pair at this position. However, this measure corresponds with BRT1609AC. Gaia DR3 lists no other companion for a potential match with TDS5171AB. Suggested WDS catalogue update: Add WDS note code ' $X$ ' for TDS5171AB, and change component designation BRT1609AC to AB and add Gaia DR3 measurement for BRT1609

TDS7016AB: Gaia DR3 pair at this position matches the data for DAM2006AB,C. No other Gaia DR3 object for a match with TDS7016AB. Suggested WDS catalogue update: X-mark the Tycho measure as erroneous, delete DAM2006AB, C and take the DAM measure as first observation of TDS7016AB

TDS8418AB: Gaia DR3 measure corresponds with DAM 579AC. Another potential companion offered by Gaia DR3 is with $G=17.8$ too faint by far for a match with TDS8418AB. Suggested WDS catalogue update: X-mark the Tycho measure as erroneous, delete the DAM 579AC object, take the DAM measure as first observation of TDS8418AB and list the Gaia DR3 measure as second observation with precise magnitudes

TDT 563: With some allowances positive. Possible match with Gaia DR3 $G=11.4+11.6$ pair with $292^{\circ}$ and $0^{\prime \prime} .50$. Suggested WDS catalogue update: X-mark the Tycho measure as erroneous and list the Gaia DR3 measure as first observation

TDT2232AB: With some allowances match with Gaia DR3 $G=10.7+13.5$ pair with $356^{\circ}$ and $3^{\prime \prime} .23$. However, this measure corresponds with GII 51AC. Gaia DR3 offers no companion for a match with TDT2242AB. Suggested WDS catalogue update: WDS note code ' $X$ ' for TDT2232AB, change component designation GII 51AC to AB

| TDT2548AB: | Gaia DR3 $G=11.1+11.2$ pair at this position with $327^{\circ}$ and $0^{\prime \prime} .56$ is a match for COU 827Aa,Ab. No other Gaia DR3 companion matching TDT2548B. Suggested WDS catalogue update: WDS note code ' $X$ ' for TDT2548AB. Change COU 827 component designations from $A a, A b$ to $A B$ |
| :---: | :---: |
| TDT2738CD: | The Gaia DR3 measure for TDT2738CD matches the data for nearby HEI 78AB. This means TDT 2738 is clearly a rediscovery of HEI 78AB. However, the WDS precise position for HEI 78 AB points obviously to component C and there is only one single Gaia DR3 object at this position. In consequence the measurements listed in the WDS catalogue for HEI 78AC have a quadrant issue. Suggested WDS catalogue update: Change HEI 78AB and AC precise position to $210536.05+144158.0$ and add WDS note code ' $T$ ' to $A B$ for similar parallax and proper motion. Declare TDT2738CD as rediscovery of HEI 78AB (maybe X-mark as imprecise measurement) and mark the HEI 78AC measures in the observation history with a ' $q$ ' for quadrant issue |
| TDT3626: | Positive match with Gaia DR3 $G=11.7+14.8$ pair with $228^{\circ}$ (quadrant issue) and $1^{\prime \prime} .7$. Slight position error due to high proper motion. Suggested WDS Catalogue update: Correct precise position to 223802.8+491351.7. Either add Gaia DR3 measurement as second observation or X-mark Tycho measure as erroneous and add Gaia DR3 measurement as first observation. Add WDS note code ' $T$ ' for similar parallax and proper motion | means TDT 2738 is clearly a rediscovery of HEI 78AB. However, the WDS precise position for HEI 78AB points obviously to component C and there is only one in the WDS catalogue for HEI 78AC have a quadrant issue. Suggested WDS catalogue update: Change HEI 78AB and AC precise position to $210536.05+144158.0$ and add WDS note code ' $T$ ' to $A B$ for similar parallax and proper motion. Declare TDT2738CD as rediscovery of HEI 78AB (maybe X-mark as imprecise measurement) and mark the HEI 78AC measures in the observation history with a ' $q$ ' for quadrant issue

TDT3626: $\quad$ Positive match with Gaia DR3 $G=11.7+14.8$ pair with $228^{\circ}$ (quadrant issue) and $1^{\prime \prime} .7$. Slight position error due to high proper motion. Suggested WDS Catalogue update: Correct precise position to 223802.8+491351.7. Either add Gaia DR3 measurement as second observation or X-mark Tycho measure as erroneous and add Gaia DR3 and proper motion

## Potential further research

Gaia DR3 is expected to resolve double stars with a moderate delta in magnitude and moderate brightness down to a separation potentially as close as $0^{\prime \prime} .18$. Therefore, it should be possible to extend the research presented here to all Tycho Double Stars with a separation below $1^{\prime \prime} .45$, which would cover the rest of 8,625 so far unconfirmed TDS/TDT objects.

## References

C. Fabricius, E. Høg, V.V. Makarov, B.D. Mason, G.L., Wycoff and S.E. Urban, 2002, The Tycho Double Star Catalogue, Astronomy $6 \mathcal{A}$ Astrophysics, 384, 180-189
Knapp, Wilfried; Gould, Ross, 2016, Visual Observation and Measurements of some Tycho Double Stars, Journal of Double Star Observing, 12 No 5 pp. 427-436
F. Torra, J. Castañeda, C. Fabicius et al., 2021, Gaia Early Data Release 3. Building the Gaia DR3 source list - Cross-match of Gaia observations, Astronomy ${ }^{\mathcal{E}}$ Astrophysics, 649, A10

## Acknowledgements

The following tools and resources have been used for this research:
Washington Double Star Catalog
Gaia DR3 Catalogue (via CDS VizieR)
CDS X-Match tool
UCAC4 catalogue (CDS VizieR)
Tycho Double Star Catalog
Aladin Sky Atlas v11
SIMBAD, VizieR
2MASS All Sky Catalog
CDS DSS2 colour image composition

## Appendix A

Tables with Gaia DR3 cross-match results for 2,149 unconfirmed TDS/TDS objects
Table 1-1,431 TDS/TDT objects with no Gaia DR3 companion
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)
Suggested WDS Catalogue update: Add WDS note code ' $X$ '.

| WDS | DD | Theta | Rho | M1 | M2 | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00003+6024$ | TDS1237 | 217.2 | 1.77 | 11.98 | 12.17 | No Gaia DR3 companion |
| $00046+5833$ | TDS128 | 227.9 | 2.57 | 9.55 | 12.67 | No Gaia DR3 companion |
| $00056+5753$ | TDS1288 | 15.8 | 1.72 | 11.71 | 12.02 | No Gaia DR3 companion |
| $00064+4938$ | TDS1292 | 120.2 | 2.03 | 12.07 | 12.2 | No Gaia DR3 companion |
| $00065-5224$ | TDS1295 | 287.5 | 2.78 | 12.42 | 13.2 | No Gaia DR3 companion |
| $00074+5218$ | TDS1302 | 127.3 | 1.61 | 12.25 | 13.03 | No Gaia DR3 companion |
| $00092+5217$ | TDS1318 | 115.0 | 1.96 | 11.67 | 12.07 | No Gaia DR3 companion |
| $00102+5016$ | TDS1328 | 108.5 | 1.83 | 11.05 | 12.39 | No Gaia DR3 companion |
| $00182+5911$ | TDS1389 | 12.4 | 2.12 | 11.54 | 12.45 | No Gaia DR3 companion |
| $00185+6735$ | TDS1391 | 167.0 | 2.02 | 11.56 | 12.21 | No Gaia DR3 companion |

Table 2 - ten positive matches of TDS/TDT objects with Gaia DR3 (Delta Theta $<31^{\circ}$ and delta Rho $<0^{\prime \prime} .85$ )
(Stub. Full table with comments available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)
Suggested WDS Catalogue update: Add Gaia DR3 measure as the second observation. Add WDS note code ' $T$ ' for TDS2124 with similar parallax and proper motion.

|  | Tycho |  |  |  | Gaia 2016 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | Theta | Rho | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ |
| $02073-0754$ | TDS2124 | 168.6 | 1.53 | 12.03 | 12.40 | 146.590 | 1.48057 | 11.988 | 13.146 |
| $06330-2430$ | TDS3914 | 268.0 | 2.35 | 10.53 | 12.51 | 237.303 | 2.51817 | 10.393 | 14.158 |
| $06527+0742$ | TDS 295 | 189.3 | 1.56 | 10.72 | 11.78 | 202.074 | 1.03984 | 10.917 | 12.526 |
| $07078-0647$ | TDS4499 | 214.8 | 2.42 | 10.86 | 12.13 | 218.702 | 2.34460 | 10.723 | 12.030 |
| $08040-2404$ | TDS5493 | 280.9 | 2.34 | 10.99 | 12.55 | 304.301 | 2.06631 | 10.962 | 12.786 |
| $12540-6324$ | TDS8575 | 167.1 | 2.27 | 11.30 | 12.00 | 174.658 | 2.21053 | 10.626 | 11.949 |
| $18053+7217$ | TDT 668 | 42.5 | 1.99 | 11.10 | 12.24 | 41.055 | 1.90364 | 11.273 | 11.948 |
| $18201-1631$ | TDT 802 | 348.7 | 1.76 | 11.33 | 12.19 | 358.626 | 1.58497 | 10.831 | 12.014 |
| $19417+5424$ | TDT1639 | 257.0 | 2.24 | 11.26 | 12.42 | 261.487 | 2.34019 | 10.821 | 12.427 |
| $19452+1823$ | TDT1708 | 211.8 | 1.83 | 11.12 | 12.50 | 199.261 | 0.98001 | 11.103 | 12.547 |

Table 3-44 potentially positive matches of TDS/TDT objects with Gaia DR3, but most likely false positives
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)
Suggested WDS Catalogue update: Either add Gaia DR3 measure as second observation (beware of quadrant issues) or X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation

|  | Tycho |  |  |  | Gaia 2016 |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | Theta | Rho | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ |
| $02076+6318$ | TDS2126 | 241.7 | 1.82 | 11.34 | 12.97 | 199.101 | 4.79355 | 10.904 | 14.407 |
| $02519+4713$ | TDS2376 | 26.8 | 1.96 | 12.06 | 12.09 | 179.459 | 1.46975 | 11.408 | 14.643 |
| $02519+4713$ | TDS2376 | 26.8 | 1.96 | 12.06 | 12.09 | 179.459 | 1.46975 | 11.408 | 14.643 |
| $03482-8946$ | TDS2656 | 203.5 | 2.10 | 11.04 | 12.06 | 51.358 | 1.76384 | 10.854 | 14.511 |
| $04190+7241$ | TDS2819 | 116.4 | 1.90 | 11.02 | 12.36 | 235.964 | 4.14563 | 10.907 | 14.995 |
| $06093-6518$ | TDS3590 | 228.2 | 1.55 | 10.46 | 12.43 | 184.892 | 2.85255 | 10.226 | 13.631 |
| $06368-0009$ | TDS3967 | 314.0 | 1.96 | 11.52 | 12.31 | 158.835 | 0.71731 | 11.236 | 12.728 |
| $07159+0029$ | TDS4645 | 356.6 | 1.61 | 10.80 | 12.38 | 59.599 | 3.36688 | 10.238 | 13.925 |
| $07463-2619$ | TDS5185 | 187.1 | 2.50 | 12.32 | 12.46 | 147.868 | 3.51102 | 12.221 | 14.903 |
| $08091-4445$ | TDS5572 | 111.8 | 2.11 | 11.36 | 11.92 | 272.171 | 2.40511 | 11.142 | 14.795 |

## Table 4-655 false positive matches of TDS/TDT objects with Gaia DR3 objects fainter than $G=15$

(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)
Suggested WDS Catalogue update: X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation

|  | Tycho |  |  |  |  | Gaia 2016 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| WDS | DD | Comp | Theta | Rho | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ |  |
| $00014+6347$ | TDS1249 |  | 201.8 | 1.89 | 10.48 | 12.13 | 356.394 | 3.35415 | 10.283 | 15.913 |  |
| $00081+6414$ | TDS1306 |  | 177.4 | 2.48 | 11.66 | 12.41 | 43.431 | 2.06856 | 11.634 | 17.782 |  |
| $00151+5407$ | TDS1359 |  | 198.9 | 1.76 | 11.03 | 12.92 | 156.658 | 4.50852 | 10.643 | 17.699 |  |
| $00156+5534$ | TDS1364 |  | 7.2 | 2.41 | 11.42 | 12.22 | 309.813 | 4.76788 | 11.323 | 15.644 |  |
| $00279+6217$ | TDS1473 | AB? | 215.6 | 1.94 | 11.43 | 12.44 | 217.713 | 3.49907 | 11.258 | 19.565 |  |
| $00313+5000$ | TDS1507 |  | 65.0 | 1.95 | 10.33 | 11.56 | 336.974 | 3.33839 | 9.538 | 20.266 |  |
| $00332+5248$ | TDS1517 |  | 13.4 | 2.46 | 11.48 | 12.28 | 153.835 | 5.00345 | 11.447 | 19.123 |  |
| $00425+5735$ | TDS1575 |  | 141.5 | 2.10 | 11.82 | 12.60 | 98.112 | 4.88338 | 11.306 | 17.129 |  |
| $00443+5846$ | TDS1593 |  | 103.9 | 2.30 | 12.62 | 13.25 | 309.545 | 2.13111 | 12.138 | 19.585 |  |
| $00466+6006$ | TDS1607 |  | 203.7 | 1.51 | 11.71 | 12.27 | 227.596 | 2.17934 | 11.317 | 19.462 |  |

## Table 5 - ten special cases

(Stub. Full table with comments available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)
Suggested WDS Catalogue update: See report text

|  | Tycho 1991 |  |  |  |  | Gaia 2016 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: |
| WDS | DD | Comp | Theta | Rho | M1 | M2 | Theta | Rho | $G_{1}$ | $G_{2}$ |  |
| $05508-465$ | TDS3375 | Aa.Ab | 209.1 | 2.17 | 10.90 | 12.32 | 261.031 | 0.52363 | 11.323 | 11.822 |  |
| $07446-1341$ | TDS5152 | AB | 253.0 | 1.51 | 11.76 | 11.98 | 239.057 | 3.61740 | 11.825 | 13.558 |  |
| $07455-3322$ | TDS5171 | AB | 249.3 | 2.10 | 11.59 | 12.34 | 28.258 | 3.51205 | 11.743 | 12.382 |  |
| $10061-5718$ | TDS7016 | AB | 331.2 | 1.73 | 12.03 | 12.26 | 178.567 | 2.08078 | 11.805 | 14.899 |  |
| $12313-6042$ | TDS8418 | AB | 269.8 | 1.67 | 12.03 | 12.73 | 343.060 | 4.22686 | 11.913 | 14.892 |  |
| $17539+1413$ | TDT 563 |  | 61.5 | 1.67 | 11.07 | 12.37 | 292.485 | 0.49836 | 11.434 | 11.634 |  |
| $20236+3854$ | TDT2322 | AB | 210.6 | 1.45 | 11.12 | 11.37 | 355.778 | 3.22912 | 10.697 | 13.509 |  |
| $20482+2622$ | TDT2548 | AB | 212.3 | 2.53 | 10.55 | 11.52 | 326.817 | 0.55541 | 11.084 | 11.241 |  |
| $21056+1443$ | TDT2738 | CD | 189.7 | 1.93 | 11.85 | 12.04 | 2333838 | 1.82304 | 11.881 | 12.323 |  |
| $22380+4914$ | TDT3626 | AB | 43.8 | 2.98 | 11.71 | 11.99 | 228.005 | 1.70643 | 11.685 | 14.848 |  |

## Appendix B

Tables with proof of concept side results
Table 6 - Seven proof of concept pairs with imprecise last measurement due to proper motion issues

|  |  |  | Gaia DR3 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | Theta | Rho | M1 | M2 | Theta | Rho | $G_{1}$ | $G_{2}$ |
| $01388-1758$ | LDS 838 | 338 | 1.9 | 12.70 | 13.20 | 190.475 | 2.25894 | 10.818 | 10.508 |
| $04132+5032$ | CHR 15 | 39 | 1.9 | 14.00 | 14.60 | 51.088 | 1.64341 | 12.698 | 13.261 |
| $08582+1945$ | LDS3836 | 248 | 2.6 | 13.37 | 13.37 | 230.903 | 2.17474 | 11.966 | 12.486 |
| $16077-3802$ | COO 193 | 224 | 1.9 | 8.97 | 8.99 | 45.931 | 4.08300 | 8.690 | 8.720 |
| $19034+2343$ | J 2937 | 57 | 2.1 | 11.50 | 12.10 | 62.485 | 2.45728 | 12.141 | 13.154 |
| $19552-0051$ | BU 830 | 112 | 2.4 | 8.46 | 11.79 | 114.663 | 2.06118 | 8.259 | 11.254 |
| $23296+1548$ | NSN 770 | 309 | 2.0 | 13.69 | 13.88 | 303.036 | 1.58277 | 13.102 | 13.207 |

Note to J 2937: Third component $G=15.9$ nearby most likely physical with primary

Table 7-99 proof of concept pairs with imprecise last measurements (Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_I/)

|  |  |  | Gaia DR3 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | PA | Sep | M1 | M2 | theta | rho | $G_{1}$ | $G_{2}$ |
| $00073+2058$ | HDS 12 | 6 | 2.2 | 9.22 | 11.53 | 2.785 | 2.59544 | 8.910 | 11.210 |
| $00105+5540$ | ES 930 | 339 | 2.7 | 11.24 | 11.33 | 339.073 | 3.06997 | 11.084 | 11.156 |
| $00309+2135$ | J 634 | 249 | 2.3 | 9.80 | 11.80 | 247.004 | 2.67694 | 11.622 | 13.195 |
| $01203+2122$ | A 1905 | 332 | 1.8 | 9.65 | 11.21 | 331.511 | 0.96271 | 9.493 |  |
| $01529+2152$ | J 671 | 153 | 2.7 | 11.60 | 11.80 | 153.328 | 3.01786 | 11.579 | 12.133 |
| $02223+6131$ | NSN 17 | 65 | 2.7 | 14.80 | 15.80 | 69.379 | 3.49990 | 14.082 | 15.269 |
| $02289+0044$ | J 648 | 154 | 2.3 | 10.50 | 11.00 | 155.475 | 2.73557 | 10.330 | 11.074 |
| $02586-4444$ | DON 44 | 345 | 2.3 | 10.10 | 11.46 | 327.934 | 2.20403 | 9.916 | 11.486 |
| $03048+0807$ | J 303 | 39 | 2.5 | 10.29 | 11.83 | 39.891 | 3.00693 | 10.178 | 11.240 |
| $03120+1538$ | BRT1175 | 143 | 2.4 | 12.10 | 12.30 | 138.967 | 2.88408 | 12.016 | 12.260 |

Table 8 - Two proof of concept pairs with erroneous WDS precise positions

|  |  |  | Gaia DR3 |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | PA | Sep | M1 | M2 | theta | rho | $G_{1}$ | $G_{2}$ |
| $18461+1000$ | J 1215 | 128 | 1.7 | 12.14 | 12.40 | 127.810 | 1.81867 | 11.044 | 11.309 |
| $19585+2202$ | L 47 | 303 | 2.4 | 10.20 | 11.20 | 303.332 | 2.41264 | 11.130 | $12.433 ?$ |

Note to J 1215 - No such pair at the given precise position. Position error. Correct position is identical with WDS $18462+1001$ HEI 804 at $184609.30+100106.8$ (which means HEI 804 is a 1990 rediscovery of J 1215 lost since 1983)
Note to L 47 - No such pair at this position. Looks like a WDS precise position error - nearby at $195841.11+220333.9$ a matching Gaia DR3 $G=11.1 / 12.4$ pair with $303^{\circ}$ and $2^{\prime \prime} .41$

Table 9 - Three proof of concept pairs with magnitude issues in relation to Gaia DR3 $G$ mags

|  |  | Gaia DR3 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | PA | Sep | M1 | M2 | theta | rho | $G_{1}$ | $G_{2}$ |
| $04332+1746$ | LDS2254 | 82 | 2.6 | 19.00 | 20.60 | 81.927 | 2.63688 | 16.953 | 16.854 |
| $17560+0827$ | J 457 | 219 | 2.6 | 9.50 | 11.00 | 217.396 | 2.63958 | 12.105 | 13.082 |
| $19316+0555$ | ELP 44 | 182 | 2.5 | 7.84 | 10.33 | 182.399 | 2.48441 | 10.562 | 14.396 |

# UNCONFIRMED TYCHO DOUBLE STARS VERSUS GAIA DR3 - II 

Wilfried R.A. Knapp, Vienna, Austria<br>email: wilfried.knapp@gmail.com \& www.sterngucker.eu<br>and

Ross Gould, Canberra, ACT, Australia
email: rgould1792@optusnet.com.au


#### Abstract

As follow up to our paper 'Unconfirmed Tycho Double Stars versus Gaia DR3 - I', this report takes a closer look at the remaining subset of 8,625 unconfirmed TDS/TDT objects with angular separation below 1.45 arcseconds based on the assumption that Gaia DR3 should most likely resolve such close double stars. With a combination of automatic cross-matching and manual checking of potential candidates we found 547 TDS/TDT objects confirmed by Gaia DR3 companions within the search radius of 3 arcseconds with reasonable data differences and 178 pairs with significant Rho and Theta data deltas.

Of the remaining TDS/TDT objects 440 have very faint Gaia DR3 companions outside the Tycho magnitude limit. However, 'something' acceptable as double star exists here at these positions.

The rest of the TDS/TDT objects have no companion within the search radius of 3 arcseconds and are thus considered spurious.


## Method

The method used is the same as in our first paper 'Unconfirmed Tycho Double Stars versus Gaia DR3 - I' (Gould \& Knapp, 2023), which basically means matching the TDS/TDT objects against the Gaia DR3 catalog.

As the proposed separation of the selected TDS/TDT objects goes down to just under $0^{\prime \prime} .4$, we expected a slightly weaker cross-match performance, as this comes close to the proposed Gaia DR3 resolution limit of $0^{\prime \prime} .18$ (Torra et al. 2021), which is in practice a best-case value under very favourable conditions. The Gaia documentation (https://gea.esac.esa.int/archive /documentation/GEDR3/index.html) offers some advice in this regard as follows:

For sources that are separated on the sky by $0.2-0.3$ arcsec, such that they are only occasionally resolved in the Gaia transits, ambiguity in the observation-to-source matching can lead to spurious parallax values that are very large (positive or negative) and appear highly significant

The spatial resolution of Gaia EDR3 has improved with respect to Gaia DR2 and incompleteness in close pairs of stars starts below separations of $\sim 1.5$ arcsec. Below $\sim 0.7$ arcsec, the completeness in close source pairs decreases very rapidly. Nonetheless, the treatment of such sources has been improved and close pairs with separations between 0.18 and 0.4 arcsec which were erroneously considered duplicate sources in Gaia DR2 appear as two sources in Gaia EDR3 (although such pairs may still represent spurious solutions). New quality indicators in Gaia EDR3 that are related to the image parameter determination step provide useful indications whether, for instance, a source is one of a close pair (and possibly a binary) or whether it suffers from nearby disturbing sources.

Fabricius et al. (2021) show, for instance, that the parameter ipd_gof_harmonic_amplitude is useful for identifying spurious solutions of resolved doubles, which are not correctly handled in the Gaia EDR3 astrometric processing.

The resolution success for WDS double stars is according to Fabricius et al. (2021) in Gaia EDR3 significantly better than in DR2, but drops sharply below $0^{\prime \prime} .7$.


Figure 1: Completeness diagram from Fabricius et al. (2021)

There are no details given, how this 'completeness' assessment was done, so it is unclear, if this relationship is restricted to confirmed pairs. If not, then by itself the huge number of unconfirmed TDS/TDT objects would have a significant influence on the outcome. It is also unclear, if this result is valid for pairs restricted to properties typical for TDS/TDT objects - there are many reasons for unresolved pairs in Gaia DR3 such as very bright components or high proper motion, which are not relevant for this project. Therefore, we decided to check our method again in detail, using again a confirmed data set from the WDS Catalogue with parameters similar to the TDS/TDT objects in question.

## Proof of concept

Proof of concept for the presented method is done by cross-matching a sample of confirmed WDS objects with a separation from 0.4 to 1.44 arc seconds and magnitude data comparable with TDS/TDT pairs with five or more observations against the Gaia DR3 Catalog. High proper motion objects and pairs with a very bright component nearby were excluded to avoid known Gaia issues. The number of WDS objects matching these restrictions is with 687 examples small $(*)$ with the following distribution in angular separation:

| Rho | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\%$ | 6.6 | 7.1 | 8.0 | 9.3 | 10.5 | 10.9 | 9.6 | 8.9 | 9.6 | 11.2 | 8.3 |

Table A

The cross-match of these 687 pairs with Gaia DR3 with a search radius of $3^{\prime \prime}$ found all primaries but left 43 objects without a companion indicating a rather modest overall hit rate of $93.7 \%$ (see also Appendix B, Table 8) with the following distribution in angular separation for successful matches:

| Rho | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\%$ | 60.0 | 71.4 | 92.7 | 95.3 | 97.2 | 100.0 | 98.5 | 98.4 | 100.0 | 100.0 |
| $\%$ | 100.0 |  |  |  |  |  |  |  |  |  |

Table B

This result indicates that the hit rate is down to an angular separation of $0^{\prime \prime} .7$ indeed quite good, and the drop below is significant but not as sharp as proposed.

A closer look at the misses (Appendix B, Table 9) identified 12 KOI pairs (Kepler Object of Interest, observed by the Kepler space telescope looking for stars hosting one or more transiting planets), which seem somehow hard to resolve in the visual band. Another 21 misses are pairs without observation in the last 10 up to 60 years - it might be a good idea to have a closer look at these objects with a high performance telescope. Even if we might exclude some of the misses as not relevant for our project there remains an increased risk for false negatives compared to our first paper 'Unconfirmed Tycho Double Stars versus Gaia DR3'.

The fact of this modest Gaia double star resolution rate especially in the range of $0^{\prime \prime} .4$ to $0^{\prime \prime} .5$ poses a dilemma for our project because a significant part of the selected subset of the TDS/TDT objects falls into this range:

| Rho | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \% TDS/TDT | 13.1 | 28.5 | 20.2 | 11.0 | 8.6 | 6.9 | 3.7 | 2.9 | 1.8 | 1.6 | 1.6 |

Table C

The seemingly obvious solution would be to simply restrict our project to separations $\sim 0^{\prime \prime} .6$ to avoid the critical separation range. However, the lack of precision in the given Tycho measurements would necessarily lead to the inclusion of a significant number of pairs in this range as well to the exclusion of a significant number of pairs outside this range. So we decided to stick with the given subset and to use the known bad Gaia resolution rate in the range below $0^{\prime \prime} .6$ to possibly best estimate the resulting error range (see Summary).

It seemed also of interest to have a closer look at the proposed Gaia DR3 resolution limit of 0.18 arcseconds, as every technical limit is often difficult to realize in reality even under favourable conditions. A reference data set of 475 confirmed WDS pairs with separation between 0.15 and 0.34 arcseconds (in the magnitude range comparable to TDS/TDT pairs and without a known fast proper motion issue) was cross-matched with Gaia DR3 with a search radius of $1^{\prime \prime}$ with an expected low hit rate of overall about $12.5 \%$ ( $20.9 \%$ in the range of $0^{\prime \prime} .3$ and a mere $4.9 \%$ in the
range of $0^{\prime \prime} .2$ separation). Nevertheless, this demonstrates that Gaia DR3 is under very favorable conditions indeed able to resolve double stars down to separations of 0.2 arcseconds (Appendix B Table10). However, resolution in this separation range is obviously not the rule but the exception (see list of 415 unresolved pairs in Appendix B Table 11).

## How can these results be compared with Tycho?

Høg et al., 2000 state regarding Tycho-2 catalog: Good quality Tycho-2 solutions were often obtained for separations above 0.43 arcsec and, surprisingly, realistic results were sometimes derived at separations as close as 0.25 arcsec. For the Tycho-2 Catalogue the safer limit of 0.8 arcsec was however adopted, drastically reducing the number of resolved doubles.
Høg et al., 1997 state regarding Tycho catalog: Double stars were subject to dedicated data reductions, resulting in the resolution of pairs with separation down to about $1.5 \operatorname{arcsec}$. Detection of the effects of duplicity was effective down to separations of about 0.5 arcsec.
These remarks suggest some caution that we fully share - as we have already shown in our first paper there is little reason to fully trust Tycho double star measurements even for angular separations above $1^{\prime \prime} .45$ The effective risk that Gaia (with a telescope aperture of 1.0 m and contemporary technology) is not able to re.solve pairs resolved by Tycho (with a telescope aperture of 0.3 m and technology 30 years older) seems most likely close to zero.

## Results for TDS/TDT objects

The WDS catalogue contains 10,296 TDS/TDT objects with a separation of 1.44 or smaller with first observation 1991/1992 with $83.8 \%$ of them so far not confirmed by at least a second observation. This subset of 8,625 unconfirmed TDS/TDT objects was cross-matched with the Gaia DR3 catalogue with a search radius of three arcseconds around the given WDS precise position with a hit rate of $100 \%$ for the primaries. 26 objects were missed in the first run with position 2016 due to very high proper motion but found in a second run with proper motion calculated back to position 2000

For 7,435 objects, we found simply no Gaia DR3 companion within the search radius of $3^{\prime \prime}$, which means spurious due to sufficient evidence of non-existence (Appendix A, Table 1). Suggested WDS Catalogue update: Add WDS note code ' $X$ '.

For 269 objects, we found well matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .2$ and in position angle $<15^{\circ}$ and magnitudes (if given) for the secondary brighter than $G=15$ (Appendix A Table 2). The average delta in separation is $-0^{\prime \prime} .03$ and the standard deviation is $0^{\prime \prime} .10$. About $12 \%$ of the matched pairs are potentially questionable due to missing magnitude data for the secondary and about $31 \%$ of the these pairs are currently listed with a quadrant issue. However, the risk of false positives seems negligible. Suggested WDS catalogue update: Add Gaia DR3 measure as the second observation.

For 191 other objects we found fairly well matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .3$ and in position angle $<30^{\circ}$ and magnitudes (if given) for the secondary brighter than $G=15$ (Appendix A Table 3). The average delta in separation is $-0^{\prime \prime} .03$ and the standard deviation is $0^{\prime \prime} .19$. About $20 \%$ of the matched pairs are potentially questionable due to missing magnitude data for the secondary and about $34 \%$ of the these pairs are currently listed with a quadrant issue. However, the risk of false positives still seems negligible. Suggested WDS Catalogue update: Add Gaia DR3 measure as the second observation.

For 83 objects, we found with some allowances matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .4$ and in position angle $<60^{\circ}$ and magnitudes (if given) for the secondary brighter than $G=15$ (Appendix A Table 4). The average delta in separation is $-0^{\prime \prime} .03$ and the standard deviation is $0^{\prime \prime} .29$. About $33 \%$ of the matched pairs are potentially questionable due to missing magnitude data for the secondary and about $38 \%$ of the these pairs are currently listed with
a quadrant issue. However, the risk of false positive results appears to be still relatively low. Suggested WDS Catalogue update: Add Gaia DR3 measure as the second observation or X-mark the Tycho measurement as erroneous and add Gaia DR3 measure as first observation.

For 175 objects, we found at the given position within the search radius of $3^{\prime \prime}$ Gaia DR3 pairs potentially detectable by Tycho (which means secondaries brighter than $G=15$ ) but with separation and position angle not even similar to the WDS data, and for this reason considered most likely false positives (Appendix A, Table 5). About $37 \%$ of the found pairs are potentially questionable due to missing magnitude data for the secondary. Suggested WDS Catalogue update: X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation.

For 436 objects, we found Gaia DR3 pairs with companions too faint by far to be detectable by Tycho and in most cases also with large deltas in separation and position angle, which means false positives for certain (Appendix A, Table 6). In case of several components besides the primary, the brightest companion was selected as secondary. Suggested WDS Catalogue update: X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation.

Finally, 36 objects are special cases that required some detective work to get conclusive results (Appendix A Table 7). Suggested WDS Catalogue updates are given for each object individually.

## Summary

From 8,625 unconfirmed TDS/TDT objects with separation $<1^{\prime \prime} .45$ we found:
7,435 spurious objects (no companion within the search radius of 3 arcseconds)
269 pairs with $\Delta$ Theta $<15^{\circ}$ and $\Delta$ Rho $<0^{\prime \prime} .2$
191 pairs with $\Delta$ Theta $<30^{\circ}$ and $\Delta$ Rho $<0^{\prime \prime} .35$
83 pairs with $\Delta$ Theta $<60^{\circ}$ and $\Delta \mathrm{Rho}<0^{\prime \prime} .4$
175 pairs with a companion beyond allowances
436 pairs with a companion fainter than $G=15$
36 special cases, of them
25 objects without matching companion
4 pairs with $\Delta$ Theta $<60^{\circ}$ and $\Delta \mathrm{Rho}<0^{\prime \prime} .4$
3 pairs with a companion beyond allowances
4 pairs with faint companion.
Using the statistics from the proof of concept part, we estimate the number of false misses as follows:

In total we found 547 pairs confirmed within the allowance thresholds up to $\Delta$ Theta $<60^{\circ}$ and $\Delta \mathrm{Rho}<0^{\prime \prime} .4$.
From these pairs 87 are listed with separation up to $0^{\prime \prime} .4$ and 93 up to $0^{\prime \prime} .5$. Applying the Gaia DR3 hit range of $60 \%$ and $71.4 \%$ in these groups (see Fig. 3) suggests a number of 95 misses. This estimate is a bit on the pessimistic side, as we ignore the fact that several of the missed proof of concept objects seem a bit questionable. Together with all other separation groups, we estimate a total number of 100 cases of missing Gaia DR3 companions in the cross-match of the TDS/TDT subset examined in this report. What looks like a large number is in relation to the number of objects in question actually tiny with a projected false negative risk of $1.2 \%$. In comparison, the false positive rate in the Tycho Double Star Catalogue for this group of unconfirmed TDS/TDT objects is $>85 \%$ even when counting the 'something is here' as hits.

Overall, this means:
$86.49 \%$ of the checked TDS/TDT objects are assessed as spurious with a projected error rate of about $1.2 \%$
$6.34 \%$ are considered confirmed within defined thresholds
$7.17 \%$ objects were found with 'something is here', which means companions beyond the defined thresholds or with very faint companions.

There remains the question, how many of the confirmed TDS/TDT objects might be just lucky hits. To find an answer to this question we selected a random sample of 10,000 Gaia DR3 objects
with $G=11$ and checked for objects with a companion within a search radius of $3^{\prime \prime}$ (corresponding with the search radius used for cross-matching the TDS/TDT objects with Gaia DR3). We found here in total 1,094 pairs including 90 triples, which gives a hit rate of $10.9 \%$ slightly below the hit rate in the TDS/TDT sample of in total $13.51 \%$ including the 'something is here' objects. However, the number of objects with a separation below $1^{\prime \prime} .5$ is with 207 cases significantly below the number of confirmed TDS/TDT objects in this separation range and also the distribution in the separation bins is very different.

This is an interesting statistical anomaly of TDS/TDT objects with separation below $1^{\prime \prime} .5$ in comparison with the sample of confirmed WDS objects in this range and also with the random sample that has a quite different distribution in the various separation bins with an obvious bias towards the smaller separations:

| Rho | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \% WDS sample | 6.6 | 7.1 | 8.0 | 9.3 | 10.5 | 10.9 | 9.6 | 8.9 | 9.6 | 11.2 | 8.3 |
| \% Random sample | 11.6 | 5.3 | 4.3 | 5.8 | 7.7 | 7.2 | 9.7 | 9.7 | 14.0 | 14.5 | 11.1 |
| \% TDS/TDT | 13.1 | 28.5 | 20.2 | 11.0 | 8.6 | 6.9 | 3.7 | 2.9 | 1.8 | 1.6 | 1.6 |

Table D

Interestingly, the group of 269 confirmed TDS/TDT pairs with Theta $<15^{\circ}$ and Rho $<0^{\prime \prime} .2$ reflect this anomaly:

| Rho | 0.4 | 0.5 | 0.6 | 0.7 | 0.8 | 0.9 | 1.0 | 1.1 | 1.2 | 1.3 | 1.4 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| \% Table 2 | 13.5 | 20.4 | 23.8 | 19.3 | 8.9 | 5.9 | 3.7 | 2.9 | 0.7 | 0.0 | 0.0 |

Table E

These values make clear that the number of confirmed TDS/TDT objects is far beyond a potential random hit rate. The re-reduction method used for the creation of the Tycho Double Star catalogue (Fabricius et al., 2002) was obviously very well suited to identify double stars down to a separation below $0^{\prime \prime} .4$. However, it is also evident that this procedure had also a heavy tendency for false positives in the range of separation $0^{\prime \prime} .6$ and below.

Together with our 'Unconfirmed Tycho Double Stars versus Gaia DR3 - I' paper we have covered in total over 10,000 so far unconfirmed TDS/TDT objects and found the vast majority of them to be spurious. There is due to unavoidable star catalogue errors a risk to have declared about 100 of these objects erroneously as spurious but we consider this a fair price to be able to declare over 9,000 of such proposed pairs correctly as spurious.
$(*)$ Historically, the great double star discovery surveys of the 19 th and 20th centuries were typically limited to stars brighter than magnitude 10 or 11 , and were known to be incomplete among fainter stars, in part due to the limited apertures of the visually-used telescopes. Also, surveys to a particular visual magnitude were preferred for statistical reasons to aim at completeness to the resolution limit of the telescopes used. Tycho stars claimed as double are mostly dimmer than the irregular magnitude cut-off for the earlier surveys, hence the rather modest number of long-known both close and faint doubles available for comparison.

## References

U. Bastian \& E. Høg, Construction of the Tycho Catalogue (https:
www. cosmos.esa.int/documents
/532822/552851/vol4_all.pdf/03620ada-c47f-417f-99cd-b92b676f845c)
C. Fabricius, E. Høg, V.V. Makarov, B.D. Mason, G.L., Wycoff and S.E. Urban, 2002, The Tycho Double Star Catalogue, Astronomy \& Astrophysics 384, 180-189
C. Fabricius, X. Luri, F. Arenou, et al., 2021, Gaia Early Data Release 3. Catalogue validation. Astronomy ${ }^{6}$ Astrophysics 649, pp. A5
E. Høg, G. Bassgen, U. Bastana et al., 1997, The Tycho Catalogue, Astronomy $\xi^{\circ}$ Astrophysics 323, L57, L60
E. Høg, C. Fabricius, V.V. Makarov et al., 2000, Construction and verification of the Tycho-2 Catalogue, Astron. $\mathcal{E}^{3}$ Astrophys. 357, 367
Knapp, Wilfried \& Gould, Ross, 2016, Visual Observation and Measurements of some Tycho Double Stars, Journal of Double Star Observing, 12 No 5 pp. 427-436
Knapp, Wilfried \& Gould, Ross, 2023, Unconfirmed Tycho Double Stars versus Gaia DR3 - I, Webb Society Double Star Section Circulars, this publication.
F. Torra, J. Castañeda, C. Fabricius 2021, Gaia Early Data Release 3. Building the Gaia DR3 source lits - Cross-match of Gaia observations, Astronomy $\mathcal{G}$ Astrophysics, 649, A10

## Acknowledgements

The following tools and resources have been used for this research:
Washington Double Star Catalog
Gaia DR3 Catalogue (via CDS VizieR)
CDS X-Match tool
Tycho Double Star Catalog
Aladin Sky Atlas v11
SIMBAD, VizieR

## Appendix A

Tables with Gaia DR3 cross-match results for 8,625 unconfirmed TDS/TDS objects Table 1-7,435 TDS/TDT objects with no Gaia DR3 companion
(Stub with 10 rows, full table available for download from https//www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: Add WDS note code ' $X$ '

| WDS | TDS | Theta | Rho | M1 | M2 | Comment |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
|  |  |  |  |  |  |  |
| $00005+4556$ | 1239 | 126 | 0.6 | 11.93 | 12.12 | No Gaia DR3 companion |
| $00006-2916$ | 1240 | 288 | 0.6 | 11.54 | 12.12 | No Gaia DR3 companion |
| $00007+5417$ | 1243 | 109 | 0.5 | 11.04 | 11.05 | No Gaia DR3 companion |
| $00007+5600$ | 1242 | 359 | 0.5 | 11.29 | 11.41 | No Gaia DR3 companion |
| $00007+5614$ | 1241 | 236 | 0.6 | 11.31 | 11.62 | No Gaia DR3 companion |
| $00007-0601$ | 1245 | 356 | 0.5 | 10.82 | 11.15 | No Gaia DR3 companion |
| $00011+5622$ | 1247 | 114 | 0.6 | 11.60 | 11.98 | No Gaia DR3 companion |
| $00014-0920$ | 1251 | 106 | 0.8 | 12.12 | 12.12 | No Gaia DR3 companion |
| $00019+5257$ | 1255 | 52 | 0.6 | 11.40 | 11.94 | No Gaia DR3 companion |
| $00020+1720$ | 1256 | 242 | 0.4 | 10.95 | 11.15 | No Gaia DR3 companion |

Table 2-270 TDS/TDT objects with matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .2$ and delta in position angle $<15^{\circ}$ and magnitude for the secondary brighter than $G=15$
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: Add Gaia DR3 measure as second observation

| WDS TDS C | Comp | Theta | Tycho |  | M2 | Theta | Gaia DR3 |  | $G_{2}$ | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Rho | M1 |  |  | Rho | $G_{1}$ |  |  |
| 00017+5905 1252 | $\mathrm{Aa}, \mathrm{Ab}$ | 63 | 0.9 | 10.90 | 11.97 | 60.935 | 0.77423 | 10.882 | 11.650 |  |
| $00164+57221375$ | $\mathrm{Aa}, \mathrm{Ab}$ | 123 | 0.8 | 11.63 | 11.98 | 128.564 | 0.71375 | 11.422 | 11.682 |  |
| 00171+5807 1381 |  | 299 | 0.8 | 11.57 | 11.72 | 289.049 | 0.68014 | 11.062 | 11.590 |  |
| 00219-3908 1421 |  | 1 | 0.7 | 10.94 | 11.23 | 173.061 | 0.61093 | 10.833 | 10.944 | Q |
| 00268-3707 1464 |  | 315 | 0.8 | 11.87 | 11.93 | 130.656 | 0.63568 | 11.427 | 11.999 | Q |
| $00292+40431488$ |  | 110 | 0.5 | 10.79 | 10.93 | 123.646 | 0.68386 | 9.800 |  | M |
| 00306+5412 1499 |  | 296 | 0.7 | 11.57 | 11.77 | 122.643 | 0.71447 | 11.416 | 12.062 | Q |
| 00360+5034 1541 |  | 321 | 0.8 | 11.23 | 11.54 | 319.706 | 0.62603 | 10.873 | 11.565 |  |
| 00383-6405 1555 |  | 271 | 0.4 | 10.78 | 10.85 | 280.104 | 0.38581 | 10.382 | 10.845 |  |
| 00470-6932 28 |  | 292 | 0.9 | 10.94 | 12.00 | 296.302 | 0.95013 | 10.652 | 11.690 |  |
| Q - quadrant issue <br> M - no magnitude for secondary |  |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |

Table 3-192 TDS/TDT objects with matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .3$ and delta in position angle $<30^{\circ}$ and magnitude for the secondary brighter than $G=15$
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: Add Gaia DR3 measure as second observation

| WDS TDS | Tycho |  |  |  | Gaia DR3 |  |  |  | Notes |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Theta | Rho | $M_{1}$ | $M_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ |  |
| $01370+63441929$ | 299 | 0.4 | 10.63 | 10.65 | 118.945 | 0.68182 | 9.753 |  | Q,M |
| $04128+58082787$ | 30 | 0.4 | 10.51 | 10.61 | 4.326 | 0.46864 | 10.193 | 10.461 |  |
| 06530-2951 4247 | 75 | 0.4 | 10.44 | 10.83 | 66.534 | 0.60497 | 10.043 | 11.245 |  |
| $07071+66594487$ | 149 | 0.4 | 10.75 | 10.80 | 166.823 | 0.22551 | 10.060 | 10.468 |  |
| 09191-48386466 | 160 | 0.4 | 10.51 | 10.53 | 161.697 | 0.65388 | 9.643 | 11.470 |  |
| 09253-2439 6547 | 175 | 0.4 | 10.49 | 10.73 | 193.311 | 0.41444 | 10.043 | 10.663 |  |
| 10438-5409 7439 | 164 | 0.4 | 10.73 | 10.77 | 343.999 | 0.69768 | 10.193 |  | Q,M |
| 12017-52148179 | 135 | 0.4 | 10.73 | 11.01 | 152.043 | 0.63619 | 10.223 | 11.727 |  |
| $14388+68579258$ | 230 | 0.4 | 10.64 | 10.78 | 78.370 | 0.45786 | 10.295 | 10.709 | Q |
| 14485-75589313 | 320 | 0.4 | 10.59 | 10.66 | 304.034 | 0.67466 | 10.025 |  | M |

Table 4-85 TDS/TDT objects with matching Gaia DR3 pairs with a delta in separation $<0^{\prime \prime} .4$ and delta in position angle $<60^{\circ}$ and magnitude for the secondary brighter than $G=15$
(Stub with 10 rows, full table available for download from
http://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: Add Gaia DR3 measure as second observation or X-mark the Tycho measurement as erroneous and add Gaia DR3 measure as first observation

|  | Tycho |  |  |  | Gaia DR3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | TDS Theta | Rho | $M_{1}$ | $M_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ | Notes |  |
|  |  |  |  |  |  |  |  |  |  |  |
| $00209-5534$ | 1413 | 148 | 0.8 | 12.11 | 12.15 | 332.155 | 0.45398 | 11.448 | 12.022 | Q |
| $00239+5322$ | 1438 | 17 | 0.8 | 11.11 | 11.63 | 334.614 | 1.10029 | 10.773 | 12.106 |  |
| $00586+6254$ | 1694 | 357 | 1.2 | 11.64 | 12.00 | 15.844 | 0.83500 | 11.724 | 11.864 |  |
| $00590+6110$ | 1703 | 277 | 0.6 | 11.42 | 11.53 | 265.050 | 0.90258 | 10.733 |  | M |
| $01015+5458$ | 1723 | 196 | 0.7 | 12.01 | 12.31 | 50.755 | 0.38184 | 11.463 | 12.482 | Q |
| $01022+5702$ | 1734 | 212 | 0.4 | 10.92 | 11.15 | 256.018 | 0.37245 | 10.849 | 11.007 |  |
| $01248+6414$ | 1870 | 304 | 0.5 | 11.28 | 11.35 | 281.364 | 0.81532 | 10.465 |  | M |
| $01360-8438$ | 1924 | 313 | 0.7 | 11.88 | 11.90 | 355.271 | 0.58405 | 11.418 | 12.678 |  |
| $01551-7401$ | 2054 | 115 | 0.6 | 11.38 | 11.41 | 60.099 | 0.45578 | 10.926 | 11.127 |  |
| $02154+5517$ | 2176 | 91 | 0.5 | 11.04 | 11.39 | 125.213 | 0.33441 | 10.894 | 11.550 |  |
|  |  |  |  |  |  |  |  |  |  |  |
| Q - quadrant issue |  |  |  |  |  |  |  |  |  |  |
| M - no magnitude for secondary |  |  |  |  |  |  |  |  |  |  |

Table 5-178 TDS/TDT objects with Gaia DR3 pairs at the given position within the search radius of $3^{\prime \prime}$, potentially detectable by Tycho (which means secondaries brighter than $G=15$ ) but with separation and position angle not even similar to the WDS data, and for this reason considered most likely false positives
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation

|  | Tycho |  |  |  |  | Gaia DR3 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: |
| WDS | TDS Theta | Rho | $M_{1}$ | $M_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ | Notes |  |  |  |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $00100+5530$ | 1326 | 27 | 0.4 | 11.01 | 11.08 | 206.287 | 0.82127 | 10.431 |  | M |  |  |  |
| $00177+4934$ | 9 | 108 | 0.9 | 11.19 | 11.62 | 212.751 | 1.00476 | 10.922 | 14.898 |  |  |  |  |
| $00365+5341$ | 1546 | 159 | 0.7 | 11.70 | 11.79 | 311.628 | 2.99232 | 11.038 |  | M |  |  |  |
| $00526+5636$ | 1651 | 84 | 0.6 | 11.49 | 11.63 | 211.679 | 1.14491 | 10.849 | 14.048 |  |  |  |  |
| $00593+5113$ | 1706 | 151 | 0.3 | 10.55 | 10.70 | 157.617 | 0.83372 | 10.013 |  | M |  |  |  |
| $01133+6339$ | 1804 | 342 | 0.6 | 11.15 | 12.06 | 331.187 | 1.18765 | 10.520 | 13.313 |  |  |  |  |
| $01180+6550$ | 1835 | 278 | 0.5 | 11.14 | 11.28 | 263.274 | 1.48196 | 10.419 | 12.091 |  |  |  |  |
| $01460-6523$ | 1995 | 97 | 0.4 | 9.52 | 10.13 | 61.246 | 3.18001 | 9.046 | 14.468 |  |  |  |  |
| $01547-3714$ | 2051 | 134 | 0.8 | 11.64 | 12.02 | 137.133 | 0.33253 | 11.150 | 11.770 |  |  |  |  |
| $02017+5649$ | 2089 | 242 | 0.5 | 11.39 | 11.41 | 72.739 | 1.19862 | 10.862 | 13.398 |  |  |  |  |

Q - quadrant issue
M - no magnitude for secondary

Table 6-440 TDS/TDT objects with Gaia DR3 pairs with companions too faint by far to be detectable by Tycho and in most cases also with large deltas in separation and position angle, which means false positives for certain
(Stub with 10 rows, full table available for download from https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: X-mark Tycho measure as erroneous and add Gaia DR3 measure as first observation

|  | Tycho |  |  |  |  |  |  |  |  |  |  | Gaia DR3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| WDS | TDS Comp | Theta | Rho | $M_{1}$ | $M_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ |  |  |  |  |  |  |  |  |
| $00017-2348$ | 1253 |  | 204 | 0.5 | 11.35 | 11.40 | 125.120 | 2.38664 | 10.292 |  |  |  |  |  |  |  |  |
| $00077+7839$ | 1304 | 317 | 0.5 | 11.15 | 11.18 | 197.016 | 2.93352 | 10.306 | 18.695 |  |  |  |  |  |  |  |  |
| $00091+5938$ | 1315 | $\mathrm{Ba}, \mathrm{Bb}$ | 256 | 0.4 | 10.45 | 10.45 | 280.658 | 2.82847 | 9.616 |  |  |  |  |  |  |  |  |
| $00125+5415$ | 1341 | 310 | 0.6 | 11.87 | 11.95 | 307.286 | 1.31461 | 11.207 | 15.210 |  |  |  |  |  |  |  |  |
| $00173+5346$ | 1383 | 46 | 0.6 | 11.43 | 11.68 | 24.440 | 1.61767 | 11.063 | 16.685 |  |  |  |  |  |  |  |  |
| $00212+6239$ | 1415 | 316 | 0.6 | 11.60 | 11.61 | 112.546 | 1.97555 | 10.799 | 16.929 |  |  |  |  |  |  |  |  |
| $00250+6212$ | 1450 | 281 | 0.7 | 11.75 | 11.89 | 96.197 | 2.10734 | 11.001 | 17.709 |  |  |  |  |  |  |  |  |
| $00253-7000$ | 1455 | 126 | 0.5 | 11.42 | 11.47 | 174.084 | 1.77073 | 10.645 | 16.806 |  |  |  |  |  |  |  |  |
| $00255+5858$ | 1458 | 131 | 0.8 | 12.00 | 12.30 | 56.729 | 2.63988 | 11.493 | 19.168 |  |  |  |  |  |  |  |  |
| $00272+5110$ | 1468 | 284 | 0.8 | 11.98 | 12.69 | 75.690 | 1.28815 | 11.654 | 17.602 |  |  |  |  |  |  |  |  |

Table 7-36 TDS/TDT objects with special issues
(Stub with 5 objects, full table available for download from https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
Suggested WDS Catalogue update: Given per object

|  | Gaia DR3 |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| WDS | DD | Comp | Theta | Rho | $G_{1}$ | $G_{2}$ |
|  |  |  |  |  |  |  |
| $00475+1237$ | TDS1613 | AB | 338.772 | 0.36287 | 11.047 | 11.089 |
| $03020-3101$ | TDS2418 | Aa,Ab | 311.996 | 1.57147 | 10.169 | 13.079 |
| $03580+5136$ | TDS2697 | AC | 327.068 | 0.41707 | 10.650 | 10.732 |
| $04078-2513$ | TDS2756 | Aa,Ab | 350.114 | 2.33473 | 10.235 | 17.126 |
| $05000-1623$ | TDS3035 | AC | 199.023 | 0.35911 | 10.971 | 11.075 |

```
Pair Notes with suggested WDS Catalogue update
00475+1237 Gaia DR3 measure is for HEI 303Aa,Ab. No match for TDS1613AB - spurious.
    WDS note code ' }X\mathrm{ ' for TDS1613AB. Change HEI 303 component designation to AB
03020-3101 Gaia DR3 measure is for RST1251AB. No Gaia DR3 component match for Aa,Ab match.
    TDS2418Aa,Ab spurious. WDS note code ' }X\mathrm{ ' for TDS2418Aa,Ab
03580+5136 Gaia DR3 measure is for COU2359AB listed with last observation 1990. No Gaia DR3
    component for C. WDS note code 'X' for TDS2697AC. Add Gaia DR3 measure for COU2359AB
04078-2513 Gaia measure is for TOI 954AB. No match for TDS2756Aa,Ab. WDS note code 'X'
    for TDS2756Aa,Ab
05000-1623 Hard to decide due to missing proper motion data for one component. However, it seems
    that TDS3035 is a badly measured rediscovery of RST3409 missed since 1951. The Gaia
    DR3 measure looks like a match for RST3409 with a quadrant issue. Delete TDS3035AC
    object. Add Tycho measure to RST3409 observation history and X-mark as erroneous.
    Add Gaia DR3 measurement to RST3409 observation history
```


## Appendix B

## Tables with Gaia DR3 cross-match results for 687 proof of concept objects <br> Table 8-644 proof of concept pairs out of 687 objects confirmed in Gaia DR3

(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
612 objects are confirmed with a delta in Theta $<15^{\circ}$ and a delta in Rho $<0^{\prime \prime} .2$ and 24 objects are considered confirmed with a delta in Theta up to $60^{\circ}$ and a delta in Rho up to $0^{\prime \prime} .6$ and eight objects are special cases requiring some detective work. 111 of these objects come with a quadrant issue and ten objects are listed in Gaia DR3 without $G$ for the secondary.

| WDS | DD | Theta | Rho | $M_{1}$ | $M_{2}$ | Theta | Rho | $G_{1}$ | $G_{2}$ | Notes |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00004+2749$ | TDS1238 | 88 | 0.8 | 11.70 | 11.71 | 268.126 | 0.83719 | 11.393 | 11.529 | Q |
| $00112+3331$ | COU 648 | 308 | 0.4 | 11.00 | 11.30 | 131.543 | 0.26559 | 10.813 | 10.954 | Q |
| $00112+5034$ | TDS 5 | 133 | 1.2 | 11.15 | 13.05 | 135.438 | 1.20988 | 11.155 | 12.352 |  |
| $00114-4701$ | RST 2 | 67 | 0.6 | 11.00 | 11.30 | 67.350 | 0.64187 | 10.678 | 10.935 |  |
| $00132-3942$ | RST1181 | 216 | 0.8 | 11.36 | 11.62 | 215.822 | 0.80887 | 10.951 | 11.364 |  |
| $00156+3751$ | COU 848 | 296 | 0.8 | 11.51 | 11.84 | 296.639 | 0.78710 | 11.163 | 11.440 |  |
| $00171-5551$ | RST2237 | 267 | 0.5 | 11.10 | 11.61 | 267.478 | 0.51574 | 10.819 | 11.378 |  |
| $00181+5255$ | TDS 10 | 75 | 1.2 | 11.88 | 11.91 | 255.619 | 1.25916 | 11.901 | 11.982 | Q |
| $00195+3544$ | POP 35 | 296 | 0.7 | 11.23 | 11.05 | 296.714 | 0.72970 | 10.525 | 11.420 |  |
| $00202-2437$ | RST2240 | 347 | 1.3 | 11.34 | 11.76 | 346.603 | 1.29004 | 11.073 | 11.529 |  |
| Q quadrant issue |  |  |  |  |  |  |  |  |  |  |

Table 9-43 proof of concept pairs out of 687 objects not resolved in Gaia DR3
(Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)
The combination of not observed for 10 or more years and not resolved by Gaia DR3 suggests a closer look at these objects with a high performance telescope

| WDS | DD | Comp | First | Last | Obs | Theta | Rho | M1 | M2 | Note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00155-1537$ | HU 403 |  | 1901 | 1991 | 7 | 50 | 0.7 | 11.12 | 11.49 | 1 |
| $00246-1255$ | HU 4 |  | 1899 | 1963 | 10 | 53 | 0.5 | 12.30 | 12.30 | 2 |
| $00465+1558$ | HEI 19 |  | 1978 | 2016 | 7 | 244 | 0.7 | 11.01 | 11.06 |  |


| $01385+3448$ | COU1059 | 1973 | 2011 | 9 | 133 | 0.4 | 11.30 | 11.80 | 3 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $01588+3730$ | COU1364 | 1975 | 2012 | 5 | 53 | 0.5 | 11.39 | 11.01 | 4 |
| $02212+2751$ | COU 457 | 1970 | 2011 | 7 | 161 | 0.5 | 11.40 | 12.00 | 5 |
| $02503+3230$ | COU 675 | 1971 | 2009 | 7 | 55 | 0.6 | 11.10 | 11.40 | 6 |
| $03549-1058$ | RST3389 | 1939 | 1990 | 6 | 96 | 0.4 | 11.10 | 11.10 | 7 |
| $04327+2553$ | GHE 11 | Aa,Ab | 1990 | 2012 | 21 | 12 | 0.4 | 14.20 | 14.60 |
| $04518+3047$ | JOY 4 | 1944 | 2012 | 19 | 230 | 0.8 | 12.80 | 12.00 | 9 |

1. Not observed since 1991
2. Not observed since 1963
3. Not observed since 2011
4. Not observed since 2012
5. Not observed since 2011
6. Not observed since 2009
7. Not observed since 1990
8. Gaia measures matches JOY 3 with much brighter components than listed. No match for GHE 11 Not observed since 2012
9. Not observed since 2012

## Table 10 - Gaia resolution limit test: 60 resolved pairs

Cross-match of 475 pairs with confirmed separation between 0.15 and 0.34 arcseconds with a search radius of $1^{\prime \prime}$ (Stub with 10 rows, full table available for download from
https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)

| WDS | DD | Comp | Theta | Rho | $\mathrm{M}_{1}$ | $\mathrm{M}_{2}$ | Theta | Theta | Rho | $G_{1}$ | $G_{2}$ | Note |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00479+5555$ | MLR 652 |  | 354 | 0.3 | 10.1 | 10.1 | 13.981 | 340.019 | 0.22811 | 9.414 | 9.652 |  |
| $00519+6101$ | MLR 516 |  | 272 | 0.3 | 10.7 | 11.0 | 1.896 | 273.896 | 0.29940 | 10.529 | 10.744 |  |
| $01255+0225$ | A 2315 |  | 313 | 0.3 | 10.8 | 10.8 | 22.350 | 110.650 | 0.30617 | 10.374 | 10.434 | Q |
| $01328+3551$ | A 1911 | Ea,Eb | 359 | 0.3 | 10.3 | 10.7 | 14.755 | 13.755 | 0.27572 | 10.071 | 10.159 |  |
| $01557-4351$ | I 452 |  | 322 | 0.3 | 10.2 | 10.3 | 2.863 | 324.863 | 0.29991 | 9.727 | 10.021 |  |
| $02456-2004$ | DON 40 |  | 283 | 0.2 | 10.5 | 10.6 | 4.055 | 98.945 | 0.38781 | 10.291 | 10.304 | Q |
| $02524-0755$ | RST4215 |  | 150 | 0.2 | 11.2 | 11.2 | 54.903 | 204.903 | 0.27173 | 10.656 | 10.749 |  |
| $03333+3522$ | COU1079 | AB | 39 | 0.3 | 10.0 | 10.3 | 1.443 | 40.443 | 0.30959 | 9.748 | 10.219 |  |
| $04217-0300$ | RST4238 |  | 272 | 0.3 | 11.5 | 12.0 | 0.079 | 271.921 | 0.83967 | 11.077 | 11.958 |  |
| $04308+4550$ | A 1007 |  | 162 | 0.3 | 10.3 | 10.8 | 0.350 | 161.650 | 0.34138 | 10.083 | 10.379 |  |
|  |  |  |  |  |  |  |  |  |  |  |  |  |

## Table 11 - Gaia resolution limit test: 415 unresolved pairs

Cross-match of 475 pairs with confirmed separation between 0.15 and 0.34 arcseconds with a search radius of $1^{\prime \prime}$ (Stub with 10 rows, full table available for download from https://www.webbdeepsky.com/dssc/dssc31/Tycho_Gaia_II/)

| WDS | DD | Comp | Theta | Rho | $M_{1}$ | $M_{2}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $00059-3020$ | RST5180 | AB | 340 | 0.3 | 10.00 | 10.20 |
| $00101+3825$ | HDS 23 | Da,Db | 146 | 0.2 | 11.42 | 12.85 |
| $00229-2852$ | RST1186 |  | 224 | 0.3 | 11.60 | 11.60 |
| $00288+5541$ | MLR 624 |  | 337 | 0.2 | 9.90 | 10.10 |
| $00302-1221$ | RST3345 |  | 248 | 0.3 | 10.25 | 10.72 |
| $00321-3614$ | RST2246 |  | 274 | 0.3 | 11.11 | 11.72 |
| $00365+3724$ | A 1505 | AB | 39 | 0.2 | 10.50 | 10.50 |
| $00390+4037$ | WOR 31 | AB | 124 | 0.3 | 10.50 | 10.50 |
| $00390+4040$ | BU 1159 |  | 158 | 0.2 | 9.90 | 10.10 |
| $00397-2135$ | HDS 91 |  | 224 | 0.2 | 10.02 | 10.55 |

## Cumulative index of the contents of Double Star Section Circulars

DSSC1: Measurements of 232 double stars by five observers between 1971 and 1979
(Double Star Section). Pp.18, 1979
DSSC2: Measures of the 7th hour of RA of Pourteau's Carte du Ciel double stars from POSS (D. Gellera) Pp.26, 1982

DSSC3: Measures of the 18th hour of RA of Pourteau's Carte du Ciel double stars from POSS (D. Gellera)
Micrometric measurements of double stars 1975.0-1983.0 (Double Star Section)
A colour catalogue of double and multiple stars based on human colour perception (J. J. Kaznica et al.) Pp.55, 1984

DSSC4: Photographic measures of 50 white dwarf pairs discovered by Luyten from POSS plates (D. Gellera) Micrometric measurements of double stars 1983.0-1988.0 (Double Star Section) Pp.35, 1989

DSSC5: Micrometric measurements of double stars 1988.0-1992.0 (Double Star Section) Pp.47, 1992
DSSC6: Micrometric measurements of double stars 1992.0-1995.0 (Double Star Section) Photographic measurements of 383 double stars of Pourteau's Catalogue (D. Gellera) Pp.101, 1996

DSSC7: Micrometric measurements of double stars 1995.0-1998.0 (Double Star Section) Catalogue of measurements of 182 double stars made with a CCD camera and $4-\mathrm{cm}$ SCT (G. A. Elliott) Pp.43, 1998

DSSC8: Micrometric measurements of double stars 1998.0-2000.0 (Double Star Section) Pp.23, 2000
DSSC9: Micrometric measures of double stars from 2000.0-2001.0 (Double Star Section)
Measures of 10 double stars made with a CCD camera and 20-cm Schmid-Cassegrain telescope (J. D. West)
$\Sigma 889$ : an optical double star (F. Rica Romero)
The PPM and HIPPARCOS Catalogues from a double star observer's point of view (J.-F. Courtot) Pp.37, 2001

DSSC10: Micrometric measures of double stars from 2001.0-2002.0 (R. W. Argyle \& J-F. Courtot) The nature of the double star $\Sigma 2259$ (Francisco M. Rica Romero) Measures of double stars with a CCD camera and 35.-cm Newtonian telescope in 2001 (T. Ladányi \& E. Berkó)

Recent measures of double stars made with a CCD camera (J. Doug West \& M. Gallo) Measures of double stars using eyepiece micrometers (M. Tollefsen \& E. T. H. Teague) Pp.47, 2002

DSSC11: Micrometric measures of double stars from 2002.0-2003.0 (R. W. Argyle \& J.-F. Courtot) Micrometric measures of double stars from 1998.02 to 2002.92 (A. Alzner) An astrometric survey of 250 double stars- Paper I (M. Nicholson) An astrometric survey of 250 double stars- Paper II (M. Nicholson)
An astrometric survey of 142 double stars- Paper III (M. Nicholson)
An astrometric survey of 187 double stars- Paper IV (M. Nicholson)
New double stars from the Daventry Double Star Survey (M. Nicholson)
Possible quadrant reversals in the Catalogue 2001.0 (R. Harshaw)
CCD measues of double stars 2002 (J. D. West)
Measures of double stars made with an eyepiece micrometer (M. Tollefsen)
A new component in the pair CHE 138 (T. Ladányi)

DSSC11 Measures of double stars with a CCD camera and 35.-cm Newtonian telescope in 2002
(ctd) (Ernő Berkó, Tamás Ladányi, and Gyórgy Vaskúti)
Pp. 94, 2003
DSSC12: Micrometric measures of double stars from 2003.0 to 2004.0 (J- F. Courtot \& R. W. Argyle)
Measures of double stars made with an eyepiece micrometer (Magne Tollefsen)
Measures of double stars made with an eyepiece micrometer (Tim Leese)
CCD measures of double stars 2003 (Doug West)
Measures of double stars with a CCD camera and $35 .-\mathrm{cm}$ reflector from 2002.953 to 2003.394
(Ernő Berkó, Tamás Ladányi, and György Vaskúti)
Data mining the Two Micron All Sky Survey 2MASS) for double stars (Martin Nicholson)
777 double stars in the Two Micron All Sky Survey (2MASS) (Martin Nicholson)
On double identities, recovered pairs, and optical imposters - investigations into
some neglected double stars of the Washington Double Star Catalogue (Richard Harshaw)
New measures for some neglected double stars of the Washington Double Star Catalogue
(Richard Harshaw)
Measures of some neglected southern double stars using the superCOSMOS database
(Richard Jaworski)
Pp. 96, 2004
DSSC13: Micrometric measures of double stars from 2004.0 to 2005.0 (Bob Argyle)
Micrometer measurements from 2002.97 to 2004.94 (Andreas Alzner)
Measures of double stars with a CCD camera and 35.-cm reflector from 2003.934 to 2003.942
(Ernő Berkó, Tamás Ladányi, and György Vaskúti)
Measures of neglected John Herschel southern double stars using o-line databases
(Richard Jaworski)
Measures of selected John Herschel pairs between RA 0 h and 6 h using the
SuperCOSMOS database (Richard Jaworski)
Suggested additional double stars to the Catalogue (Richard Jaworski)
The John Herschel multiple stars HJ 2116, HJ201 and HJ202 (Richard Jaworski)
Measures of neglected John Herschel southern double stars using the
SuperCOSMOS database (Richard Jaworski)
Measures of 396 neglected southern double stars (Tòfol Tobal)
Possible anonymous southern visual double stars (Tòfol Tobal)
Measures of 622 neglected northern double star RA 00h- 12h 55m (Tòfol Tobal)
Measures of double stars made with an eyepiece micrometer (Magne Tollefsen)
Common proper motion pairs from the Sloan Digital Sky Survey (John Greaves)
HJ 327AC, HJ 2002 \& HJ 9001 (Richard Jaworski and Bob Argyle)
Possible additional components to double stars (Richard Jaworski)
A search for 'missing' Luyten double stars (Richard Jaworski)
Pp. 88, 2005
DSSC14: Micrometric measures of double stars from 2005.0 to 2006.0 (Bob Argyle)
Micrometer measures from 2004.94 to 2005.96 (Andreas Alzner)
Measures of double stars made with an eyepiece micrometer (Tim Leese)
2520 previously unreported double stars (Martin Nicholson \& Hannah Varley)
Updated measures of neglected pairs in the Washington Double Star Catalogue (Richard Harshaw)
BKO161 in place of STI 1445 (Gyorgy Vaskúti \& Tamás Ladányi)
CCD measures of double stars at Palmer Divide Observatory - 2006.112 to 2006.238
(Brian D. Warner)
A modified industrial micrometer project - preliminary report (Morgan Spangle)
Some recent measures using a CCD camera (Morgan Spangle)
A search for 'missing' Luyten double stars - II (Richard Jaworski)

DSSC14 Measures of Luyten double stars using data from the 2MASS survey and SUPERCOSMOS
Measurement of the positions of Milburn (MLB) pairs from Sky Surveys (Richard Jaworski)
Measures of the neglected double star HJ2302 AB using the chronometric method (Ian Coster) Pp. 68, 2006

DSSC15: Micrometric measures of double stars from 2006.0 to 2007.0 (Bob Argyle)
Measures of double stars with a CCD camera and $25-\mathrm{cm}$ Cassegrain reflector in 2006
(Tamás Ladányi)
CCD observations of double stars at Waverley Observatory (Andrew Soon)
An analysis of errors in the measurement of visual double stars using the
Celestron Micr-Guide with an SCT and Al-Azimuth mount (Tim Napier-Munn)
Measures of 1027 neglected northern double stars RA 13h-24h (Tòfol Tobal)
Measurement of the positions of Milburn (MLB) pairs from Sky Surveys - II (Richard Jaworski)
Some measures of double stars using the chronometric method,
an eyepiece micrometer and the Aladin database (Ian Coster)
Candidate binary star systems in the Sloan Digital Sky Survey Data Release Five
(Martin Nicholson) Pp. 70, 2007
DSSC16: Micrometric measures of double stars in 2007 (Bob Argyle)
Micrometer measurements from 2006.21 to 2008.12 (Andreas Alzner)
Micrometric measures of double stars in 2007 (Jean - François Courtot)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector from 2007.109 to 2007.194 (Ernő
Berkó \& György Vaskúti)
SDSS Data Release 6 proper motion information (John Greaves)
A trapezium in the field of Chevalier 138 (Thom Gandet)
Measurements of Selected Southern Double Stars - 1 (Richard Jaworski)
Measures of 1024 neglected visual double stars (Tòfol Tobal \& Xavier Miret)
Pp. 84, 2008
DSSC17: Micrometric measures of double stars in 2008 (Bob Argyle)
Micrometer measures of the multiple system ES 1089 (Jean-François Courtot)
Measurement of some neglected southern multiple stars in Pavo (Tim Napier-Munn \&
Graham Jenkinson)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector from 2008.781 to 2008.844
(Ernő Berkó)
A sequence of algorithms for the determination of binary star orbital elements and
construction of the orbit relative to the apparent ellipse (Bill Oliver)
Measurement of ten bright double stars using a Celestron Microguide eyepiece (Ian Coster)
Analysis of six neglected pairs in the (Ian Coster)
A provisional orbit for STF 333 (WDS $02592+2120$ ) (Ian Coster)
Measures of 36 anonymous and neglected southern visual double stars (Tófol Tobal \& Xavier Miret)
OAG common proper motion wide pairs survey (Xavier Miret \& Tófol Tobal)
Pp. 75, 2009
DSSC18: Micrometric measures of double stars in 2009 (Bob Argyle)
Micrometer measures of double stars in 2009 (Jean-François Courtot)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector from 2008.852 to 2008.997
(Ernő Berkó)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector from 2009.200 to 2009.835
(Ernő Berkó)
Measurement of some neglected southern multiple stars in Dorado and Pictor
(Tim Napier-Munn \& Graham Jenkinson)

DSSC18: Investigation of two anomalies in the (Tim Napier-Munn \& Graham Jenkinson)
(ctd) Five new visual double stars (Abdul Ahad)
Measures of 58 neglected southern visual double stars (Tòfol Tobal)
OAG Common proper motion wide pairs survey - Part II (OAG Supplement No. 24) (Xavier Miret \& Tòfol Tobal)
Pp. 67, 2010
DSSC19: Micrometric measures of northern double stars in 2010 (Bob Argyle)
Micrometer measures of wide southern double stars (Bob Argyle)
The triple visual-eclipsing system CHR 175 (Thom Gandet)
High proper motion pairs from the SPM4 Catalogue (John Greaves)
Common-motion pairs and other doubles found in spectral surveys - 1. Stephenson dwarfs
and PG stars (Brian Skiff)
Measurements of visually discovered double stars between 1985-2007 (György Vaskúti)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector from 2008.852 to 2008.997
(Ernő Berkó)
Lost Chevalier pairs? (Ernő Berkó)
Three new visual double stars (Abdul Ahad)
A new double star in Cygnus? (Peter Clark)
Second European Pro-Am meeting on double stars (Bob Argyle)
OAG common proper motion wide pairs survey - Part III (X. Miret, T. Tobal, A. Bernal, M. Bernal, I. Novalbos, J. A. Santos, \& N. Miret)

Pp. 73, 2011
DSSC20 Micrometric measures of double stars in 2011 (Bob Argyle)
Micrometric measures of double stars in 2011 (Jean-François Courtot)
Astrometric measurements from 2010.7898 to 2011.6113 and six probable new pairs
(Guiseppe Micello)
Measures of double stars near M39 (Mike Swan)
A new common proper motion pair in Serpens (Abdul Ahad)
A companion to the pulsating variable V1162 Tauri (Abdul Ahad)
Lost Chevalier pairs - a followup (Bill Hartkopf)
Observations of Visually Discovered Double Stars 1997-2011 (György Vaskúti)
Measures of double stars with a DSLR camera and $35.5-\mathrm{cm}$ reflector on 2010.041
(Ernő Berkó)
Common-motion pairs and other doubles found in spectral surveys - 2. HD and miscellaneous
stars (Brian Skiff)
Common-motion pairs and other doubles found in spectral surveys - 3. Lowell, Kuiper, Vyssotsky and other low-mass pairs (Brian Skiff)
An uncatalogued double star discovered by Ward (Bob Argyle and Ernő Berkó)
The wide triple system 14 Ari (Bob Argyle, Brian Skiff and Robert Kerr)
Measures of 74 equatorial neglected visual double stars RA: 00 h 00 m to 05 h 59 m -
OAG Common proper motion survey - Supplement 26 (Tòfol Tobal)
Pp. 89, 2012
DSSC21 Micrometric measures of double stars in 2012 (Bob Argyle)
Micrometric measures of double stars in 2012 (Jean-François Courtot)
Orbit and astrophysical study of $12392-4022=$ B1215 (Fernando Rica Romero)
Measures for 24 pairs in Capricornus (Abdul Ahad)
Three new cpm pairs in Capricornus (Abdul Ahad)
Measures of wide double stars using a webcam (Axel Tute)
Common-motion pairs and other doubles found in spectral surveys - 4. Faint M-dwarf
doubles from the Sloan Digital Sky Survey (Brian Skiff)

DSSC21: Common-motion pairs and other doubles found in spectral surveys - 5. Miscellaneous pairs
Common-motion pairs and other doubles found in spectral surveys - 6. Measures for known pairs (Brian Skiff)
Twenty one wide double stars in Aquila (Giuseppe Micello)
Pp. 107, 2013

DSSC22 Micrometric measures of double stars in 2013 (Bob Argyle)
Micrometric measures of wide southern double stars in 2013 (Bob Argyle)
The system J 868 ( $00152+2722$ ) - a new optical double star with orbital parameters (F. M. Rica)
A new visual binary system in Cetus (Abdul Ahad)
A new visual double star in Orion (Abdul Ahad)
Measurement of 24 southern multiple stars (Graeme Jenkinson and Tim Napier-Munn)
Common-motion pairs and other doubles found in spectral surveys: - 7. Miscellaneous
new and known pairs (Brian Skiff)
Pp. 54, 2014
DSSC23 Micrometric measures of double stars in 2014 (Bob Argyle)
Micrometric measures of double stars in 2014 (Jean-François Courtot)
Orbital solution and astrophysical parameters for $09005+3225$ ( $=\mathrm{HU} 718$ ) and
WDS 11137+2008 AB (= STF 1517 AB) (Francisco Rica)
A new double star near Gamma Hydrae (Abdul Ahad)
Two new common proper motion doubles in Virgo (Abdul Ahad)
Measurement of nine neglected southern multiple stars (Graeme Jenkinson)
Common-motion pairs and other doubles found in spectral surveys - 8. One hundred forty
new pairs found in the Orion complex (Brian Skiff)
Common-motion pairs and other doubles found in spectral surveys - 9. Survey work for 2014
(Brian Skiff)
New astrometric catalogue available from USNO (Brian Skiff)
Pp. 100, 2015
DSSC24 Micrometric measures of double stars in 2015 (Bob Argyle)
Micrometric measures of double stars in 2015 (Jean-François Courtot)
Measures of double stars at the Winer Observatory and discovery of new pairs
(Andrè Debackére)
Discoveries of new pairs with the LCOGT network telescopes (T2M Faulkes Telescope
North, Hawaii and T1M McDonald, Texas) (Andrè Debackére)
Five new common proper motion double stars (Abdul Ahad)
Measures of 17 southern multiple stars) (Graeme Jenkinson)
Measurement of neglected southern multiple stars - two listed pairs and a possible new pair
(Graeme Jenkinson)
Measures of multiple stars in Norma (Graeme Jennkinson)
A new visual double star in Aquila (Ian Coster)
Common-motion pairs and other doubles found in spectral surveys: - 10 .
Survey work for 2015 (Brian Skiff)
Pp. 92, 2016
DSSC25 Micrometric measures of double stars in 2016 (Bob Argyle)
Micrometric measures of southern double stars in 2016 (Bob Argyle)
Micrometric measures of double stars in 2016 (Jean-François Courtot)
Some 2016 measurements of wide and faint double stars (Wilfried Knapp)

DSSC25: Double stars measurements with an astrometric eyepiece in 2016 (Neil Webster)
(ctd) Two new visual common proper motion pairs (Kasper Wierzchos)
Measures of wide double stars with a webcam - II (Axel Tute)
Common-motion pairs and other doubles found in spectral surveys: - 11 .
Survey work for 2016 prior to Gaia (Brian Skiff)
Measures of double stars with robotic telescopes (A. Debackére)
Study of the double star DBR 89 (A. Debackére)
Pp. 102, 2017
DSSC26 Micrometric measures of double stars in 2017 (Bob Argyle)
Micrometric measures of visual double stars (VI list) (Marco Scardia)
Micrometric measures of double stars in 2017 (Jean-François Courtot)
An improved technique for measuring the separation of close binary stars with a filar micrometer (Grant Morris)
Astronomical Association of Queensland 2016 programme. Measurements of nine neglected
southern double stars (Graeme Jenkinson)
Measurements of double stars with robotic telescopes in 2017 (André Debackére)
Double star measurements with a Meade 12 mm astrometric eyepiece in 2017 (Neil Webster)
Astrometric and photometric measurements of the double star J 703 (07106+1543)
(André Debackére)
2017 measurements of some wide and faint double stars (Wilfried Knapp)
Pp. 63, 2018
DSSC27 Micrometric measures of double stars in 2018 (Bob Argyle)
Measurements of double stars in 2018 Jean-François Courtot
Double star measures (2016-18) made with Reticle and Maksutov at f/30 (Rob Moseley and Martin Grahn)
Double star measurements made with a Meade 12-mm astrometric eyepiece in 2018 (Neil Webster)
Measurements of double stars with robotic telescopes in 2017-2018 (André Debackère)
Recovery of Skiff objects in Gaia DR2 (Wilfried Knapp)
Physical pairs found in Gaia DR2 (Wilfried Knapp)
Recovery of KPP objects in Gaia DR2 (Wilfried Knapp)
Photographic measurements of wide double stars (Michael Hayes)
Update on the double star J 703 ( $07106+1543)$ (André Debackère)
A serendipitous double star discovery (Stephen Westmoreland)
Blue Star Observatory measurement of twenty neglected southern multiple stars
(Peter N. Culshaw, Diane Hughes, John Hughes, Des Janke \& Graeme Jenkinson)
Pp. 102, 2019
DSSC28 Micrometric measures of double stars in 2019 (Bob Argyle)
Measurements of double stars in 2019 (Jean-François Courtot)
Micrometric measurements of double stars in 2019 (Andreas Alzner)
Nearby stars with evidence of orbital motion (John Greaves)
Double star measurements performed with a $12-\mathrm{mm}$ astrometric eyepiece during 2019 (Neil Webster)
On the Lowell Proper Motion Survey double stars listed in Simbad but unnoted in WDS
(John Greaves)
A miscellany of double stars not in WDS (John Greaves)
A new common proper motion binary in Leo (Abdul Ahad)
Catalogue access and new lists of neglected doubles (Brian Mason)
Astronomical Association of Queensland 2018 programmes: Blue Star Observatory measurement
of 16 neglected southern multiple stars (Peter Culshaw, Diane Hughes, John Hughes, Des Janke
\& Graeme Jenkinson
Observation of neglected double stars (Andre Debackére)
Pp. 64, 2020

DSSC29 Micrometric measurements of double stars in 2020 (Jean-François Courtot)
Micrometric measures of double stars 2020.10 to 2020.90 (Andreas Alzner)
Description of a CCD astrometric double star survey system (Ken Sturrock)
Astronomical Association of Queensland 2020 programme: Blue Star Observatory measurement of nine neglected southern multiple stars (Peter N. Culshaw, Diane Hughes, John Hughes, Des Janke and Graeme Jenkinson)
Astronomical Association of Queensland 2020 programme: Blue Star Observatory measurement of ten neglected southern multiple stars (Peter N. Culshaw, Diane Hughes, John Hughes, Des Janke and Graeme Jenkinson)
CMOS astrometry of double stars in 2020 (Grant Morris)
Double star measurements 2020 (Wilfried Knapp)
Observation of neglected double stars - 2 (André Debackére)
Observation of double stars with robotic telescopes in 2019/20 (André Debackére)
Pp. 79, 2021
DSSC30 Micrometric measurements of double stars in 2021 (Jean-François Courtot)
Two faint, common proper motion pairs in Hercules (Bob Argyle)
Astronomical Association of Queensland 2021 programme: Blue Star Observatory measurement
of nine neglected southern multiple stars (Graeme Jenkinson and Des Janke)
Double star measurements 2021 (Wilfried Knapp)
Measurement of double stars with robotic telescopes in 2021 (André Debackére)
A tight common radial velocity pair in Canis Minor (John Greaves)
Pp. 38, 2022

