STT Doubles with Large $\Delta \mathbf{M}$ - Part VII: And Pisces Auriga

Wilfried R.A. Knapp
Vienna, Austria
wilfried.knapp@gmail.com
John Nanson
Star Splitters Double Star Blog
Manzanita, Oregon
jnanson@nehalemtel.net

Abstract

The results of visual double star observing sessions suggested a pattern for STT doubles with large $\Delta \mathrm{M}$ of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Similar to the other objects covered so far several of the components show parameters quite different from the current WDS data.

1. Introduction

As follow up to our STT reports so far we continue in the constellations Andromeda, Pisces, and Auriga (see Table1.1). All values based on WDS data as of beginning of 2016 .

With STT103 we have here again an object with a very bright primary making measurements difficult due to ADU values near CCD saturation.

2. Further Research

Following the procedure for the earlier parts of our report we concluded again that the best approach would
be to check historical data on all objects, observe them visually with the target comparing with the existing data, and obtain as many images as possible suitable for photometry.

2.1 Historical Research and Catalog Comparisons

Several of the stars in this survey have notable aspects worth further investigation. Three main research sources were used for this section of this paper, the first of which was W.J. Hussey's Micrometrical Observations of the Double Stars Discovered at Pulkowa, published in 1901, which provided preliminary historical information on each of the stars. Hussey's book in-

Table 1. WDS Catalog Data at Beginning of 2016 for the Selected STT Objects

WDS ID	Name			RA	Dec	Sep	M1	M2	PA	Δ M	Con
00439+3734	STT	19	AB	00:43:52.14	+37:33:38.0	9.7	8.54	11.40	115	2.86	And
01189+3958	STT	29	AB	01:18:53.15	+39:57:48.0	20.1	7.50	11.70	266	4.20	And
$23486+3616$	STT	506	AC	23:48:35.39	+36:16:28.4	21.1	7.37	10.80	80	3.43	And
00057+4549	STT	547	BP	00:05:41.00	+45:48:37.4	15.6	9.15	13.40	8	4.25	And
01256+3133	STT	30	AB	01:25:34.17	+31:33:01.9	4.6	8.09	11.80	245	3.71	Psc
01256+3133	STT	30	AD	01:25:34.17	+31:33:01.9	20.6	8.09	14.00	193	5.91	Psc
05074+5018	STT	94	AB	05:07:22.26	+50:18:20.2	17.9	7.44	11.10	305	3.66	Aur
05074+5018	STT	94	AC	05:07:22.26	+50:18:20.2	24.9	7.44	11.00	66	3.56	Aur
05091+4907	STT	96	AB	05:09:04.40	+49:07:18.8	20.6	6.67	11.10	105	4.43	Aur
05182+3322	STT	103	AB	05:18:10.56	+33:22:17.8	4.1	4.80	10.60	55	5.80	Aur
05232+4701	STT	104	AB	05:23:12.61	+47:01:17.9	7.1	4.80	11.10	190	4.00	Aur

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga
cludes his observations and measures of all the stars originally listed in Otto Wilhelm Struve's 1845 Pulkovo Catalog, as well as data beginning with the date of first measure and continuing through the following years up to 1900. That data, plus inclusion of the background for the Pulkovo Catalog, makes Hussey's book a valuable source of reference. Also consulted was S.W. Burnham's A General Catalogue of Double Stars Within 121° of the North Pole, Part II, for information on each of the three stars. In addition, Bill Hartkopf of the USNO graciously provided the text files for STT 30, STT 104, and STT 547.

Several of the stars in this survey were dropped from the second edition of Otto Struve's Pulkovo Catalogue (published in 1850) because the separations exceeded 16 ", which was the maximum catalog separation established for stars with companions fainter than ninth magnitude (Hussey, 1901, p. 16). The stars in this paper which were rejected are STT 29, STT 94, STT 96, and STT 506 AC. Fortunately, Hussey included all of the rejected stars in his 1901 book.

STT 30 (Psc). Hussey shows the first measures of the AB pair of STT 30 was made in 1843 by Otto Struve, although that measure is not listed in the WDS text file. Struve made two measures at that time (position angles of 227.8° and 234.6°, and separations of $4.39^{\prime \prime}$ and $4.53^{\prime \prime}$), which are somewhat anomalous with the measures that have followed since. In general, the position angle of the AB pair has migrated from 238° (1869) to the most recent WDS reading of 244.8° (2004), and the separation has slowly increased from 4.3 " to 4.6 " over the same period.

Hussey (1901, p. 42) shows the AC pair was first measured by O . Struve in 1862 (105.0° and $56.98^{\prime \prime}$), but the WDS text file shows Mädler preceded that with an 1843 measure (105.2° and 54 "). The AC pair is remarkable for its lack of change since its discovery. There are a total of thirty-eight measures in the WDS for the pair, and there's very little difference between any of them. The most recent WDS (2011) measures are 105.7° and $56.78^{\prime \prime}$.
S.W. Burnham included a note on what is now the AD pair in his 1906 catalog entry on STT 30, although he didn't mention the year the observation was made (Burnham, 1906, Part II, p. 405). However the WDS text file shows he measured the pair in 1907 at 161.6° and 26.11 ", slightly different from his catalog estimate of 159° and $27^{\prime \prime}$. There's been a steady northward progression of the position angle and a narrowing of the separation since that time. The most recent WDS data goes back to 1998 , which is 195.4° and $21.38^{\prime \prime}$. Those numbers are consistent with the change shown in the four measures in the years between 1907 and 1998, and

Figure 1. PM of STT 30 based on URAT1 data (Aladin image).
are caused by a high rate of proper motion for the AB pair (as well as C) in contrast to very little motion for D (Figure 1).

STT 94 (Aur). Hussey (1901, p. 65) shows Mädler was first with measures of both the AB and AC pairs. His 1843 measures for AB were 304.0° and $15.60^{\prime \prime}$; for AC his measures were 63.3° and an estimated separation of $20^{\prime \prime}$. The most recent WDS measures (2011) are 305° and $17.9^{\prime \prime}$ for AB and 66° and $24.90^{\prime \prime}$ for AC. The AD pair was added in 1890 by S.W. Burnham (Figure 2). His measures were 340.9° and 26.1", and again little change is seen when compared with the most recent WDS measures (2002) of 344° and $26.3^{\prime \prime}$.
2504. OZ 94 rcj . Magnitudes from Poulkowa catalogue of 1843. Too faint to measure by $\Delta . A$ is 8 m in O. Arg. The only measures since Ma are:

AB	1899.31	$304{ }^{\circ} 4$	17 ' $_{24}$	$3 n$	$1 f u$
	1900.75	$304 . \mathrm{t}$	18.03	$2 n$	β
AC	1899.31	63.8	25.39	$3 n$	Hu
	1900.75	63.1	25.04	$2 n$	β

The 40 -inch shows a 14 m star from A, 340:9: 26:1.

Figure 2. From Part II, p. 405, of Burnham's 1906 catalog.

STT 96 (Aur) Discovered in 1843 by Otto Struve, this is a difficult pair with a large $\Delta \mathrm{M}$ between the primary and the secondary. The WDS shows magnitudes of 6.67 and 11.0 with a separation of 21.0 " (PA 105°), which may explain why Otto Struve never provided a measure for it (Burnham, 1906, and Figure 3.).

STT Doubles with Large $\Delta \mathrm{M}$ - Part VII: And Pisces Auriga

Abstract

2516. OX 96 rej . From Poulkowa catalogue of 1843 . No measures in 0Σ, and not seen by Δ in 1866 and 1868 . Ma gives angle only, $107^{\circ} \cdot 3$ (1843.27) 1 n . Companion faint, but readily seen with the 6 -inch in 1874 . The angle by Doolittle requires a correction of 180°. $1899.08 \quad 104: 8 \quad 21!25 \quad 3^{n} \quad \mathrm{Hu} \quad 6.5 \ldots 11.0$ $\mathrm{Obsy.}^{2}$ 1)...]

Figure 3. From p. 406 of Burnham's 1906 catalog, Part II.

Burnham also mentions that Dembowski failed to see the secondary in 1866 and 1868. Both Burnham and Hussey (Hussey 1901, p. 65) include an 1843 observation by Mädler which lists a position angle (107.3°) but no separation. Hussey's three observations in 18981899 with the 36 inch Lick refractor average out to the numbers listed in Figure 2.2.3, 104.8° and 21.25". Our experience with this pair confirmed their visual difficulty.

STT 104 (Aur). This is another perplexing pair because it shows a surprising change in separation given the information available for it. As the data from the WDS text file in Figure 4 shows, the position angle has been remarkably consistent, while the separation has increased steadily. The most recent proper motion data from URAT1 for the pair shows the primary with a proper motion of $+005.2-013.5$ and the secondary with proper motion of -003.6-056, which give the secondary considerably more southerly motion than the primary. Simbad shows a distance for STT 104 A of 1929 light years, but no parallax for the secondary. Given the southerly motion in declination of the secondary relative to the primary, it's likely the fainter star is quite a bit closer to us than the primary, which would make this an optical pair

STT 547 (And). In his 1901 survey of Otto

Date	PA	Sep	Date	PA	Sep
1843.27	187.7		1911.55	190	18.42
1847.02	191.1	15.74	1911.895	190	18.12
1851.27	191.4	16.25	1958.18	189.8	19.62
1852.27	190.5		1996.918	189.1	20.74
1866.81	191.7	16.64	1999.78	189.4	20.73
1895.25	190.5	17.38	2002.846	189.9	20.579
1896.3	189.2	17.53	2007.655	190.15	21.092
1898.75	189.8	17.91	2011.29	189.2	20.87
1901.103	190.1	18.17	2012.938	189.8	21.18
1907.93	189	17.89	2014.85	190	21.4

Figure 4. WDS text file data for STT 104 with Aladin image showing URAT1 proper motion arrows.

Struve's double stars, W.J. Hussey's first paragraph focused on a notable aspect of the AB pair of this multiple star: "Since discovery the angle has been increasing about three-fourths of a degree per year without appreciable change in distance. The angular motion is rapid for a binary of its distance and magnitudes" (Hussey, 1901, p. 215). With 398 observations of STT 547 AB in the WDS, that change has been documented in detail. A comparison of the first and last measurements clearly illustrates the dynamic nature of the pair, as well as confirming Hussey's description: 113.5° and $4.47^{\prime \prime}$ in 1876 , and 189.30° and $6.030^{\prime \prime}$ in 2015. Our interest in STT 547 was primarily with the BP pair due to P's faint magnitude, but we quickly noticed the position angle of the pair in the Aladin photo didn't match the 2012 WDS position angle of 340° (Figure 2.2.5, top right). BP was added to the system in 1989, with an initial measure of 54.0° and $18.8^{\prime \prime}$, while the WDS 2012 data shows measures of 340° and 18.05 ". We were unable to find a date for the Aladin image, but it appears to have been made about 1989 since the positon angle in the photo is very close to 54°. As Figure 5 shows, P is virtually stationary (Simbad shows a proper motion of $+000.1+003.9$ for P), while the AB pair is racing along at breakneck speed. Simbad's data shows identical proper motions for AB of $+879-154$. Also shown in

Figure 5. Aladin image with Simbad proper motion data shown for $A B, F$, and P. Inset at the right shows the change in the position angle of BP from about 1989 to our image taken late in 2015.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga

the image with a rapid pm is F, which Simbad lists at +870-150.

2.2 Visual Observations

Both Nanson and Knapp made visual observations of the stars included in this report. John used a 152 mm $\mathrm{f} / 10$ refractor, while Knapp utilized 140 mm and 185 mm refractors as well as a masking device to evaluate what could be seen at lesser apertures.

STT 19 (And): Knapp looked at STT 19 with a 140 mm refractor and detected the secondary as a faint spot of light at 280x. It was still detectable with the aperture reduced to 110 mm , suggesting the WDS magnitude of 11.40 is about right. John's observation with a six inch refractor at 152 x found the secondary surprisingly difficult given the magnitude differential and separation. B appeared similar in brightness to a comparison star with a UCAC4 Vmag of 12.3, suggesting a fainter magnitude for B than the WDS value.

STT 29 (And): Nanson found several comparison stars for the secondary, all of which led to the conclusion the WDS magnitude of 11.7 is correct. Wilfried saw B as a faint spot of light in the 140 mm refractor at $280 x$, which was still visible with the aperture reduced to 90 mm , leading to the possibility the secondary is a bit brighter than the WDS magnitude.

STT 506 (And): Knapp's observation of STT 506 took place when it was low in altitude. At 280x in the 140 mm refractor, C was faintly visible. With the aperture reduced to 60 mm , it could still be seen, hinting it may be a bit brighter than the WDS magnitude of 10.80 . At 84 x in the six inch refractor, Nanson found C was similar in brightness to a comparison star with a UCAC4 Vmag of 11.9, suggesting a full magnitude of difference fainter than the WDS value.

STT 547 (And): The target for this complex multiple star was the BP pair, with WDS magnitudes of 9.15 and 13.40 , separated by $18.10^{\prime \prime}$ per the WDS 2012 observation. In the six inch refractor at 152 x , Nanson could see P with averted vision, indicating it may be as much as a full magnitude brighter than the WDS value, especially when the ninth magnitude glare of the AB pair is taken into consideration. Knapp was unable to resolve P in the 140 mm refractor regardless of the magnification used, suggesting it's fainter than 13.0.

STT 94 (Aur): Knapp observed STT 94 with the 185 mm refractor at 250 x and was able to resolve B clearly and C only faintly. Using the masking device, the limit aperture for B was 140 mm and for C 170 mm , indicating the two components are fainter than the WDS magnitudes (11.10 for $\mathrm{B}, 11.0$ for C), and also that C is fainter than B . John found both B and C were easily resolved in the six inch refractor at 152 x , with B appearing a bit brighter than C. B appeared similar in
magnitude to a comparison star with a UCAC4 Vmag of 11.9 , suggesting that both B and C are fainter than the WDS values.

STT 96 (Aur): Using the six inch refractor, Nanson detected B at 152x, 190x, and 253x in the glare of the 6.7 magnitude primary. Given the 20.6 " separation and the 11.1 magnitude for B currently listed in the WDS, it appears the WDS value for B is about right. On the first attempt, Knapp was unable to resolve B with the 185 mm refractor under poor seeing conditions, which nevertheless hinted at a fainter magnitude for B than the WDS value. A second attempt resulted in faint resolution at 180 x in the 185 mm refractor. B could still be seen with the aperture reduced to 120 mm at 250 x , leading to the conclusion B is much fainter the WDS's 11.1 magnitude.

STT 103 (Aur): Knapp resolved B at 100x in the 185 mm refractor, and could still see it with the aperture reduced to 140 mm , suggesting the WDS magnitude of 10.6 is correct. Nanson needed magnifications of 487 x and 607 x in the six inch refractor in order to glimpse B, which led to the conclusion the WDS value for B is about right given the 4.1 " separation and 5.8 magnitudes of difference between the primary and secondary.

STT 104 (Aur): Nanson resolved B at 152x in the six inch refractor and found it was similar in magnitude to a comparison star with a UCAC4 Vmag of 11.9, leading to the conclusion the WDS value of 11.1 is too bright. Knapp resolved B in the 185 mm refractor at 100 x and found it was still visible at 250 x when the aperture was reduced to 90 mm , suggesting the WDS value of 11.1 is correct.

STT 30 (Psc): Using the 140 mm refractor at 280x, Knapp could detect a faint spot of light at the location of B for brief periods, suggesting it could be no brighter than the WDS value of 11.80 . D, with a WDS magnitude of 14.0 , was not seen. Nanson was able to detect B at 365 x and 380 x in the six inch refractor on two separate occasions, leading to the conclusion the WDS value for B is a likely a bit too bright. There was no hint of D, confirming Knapp's conclusion it's certainly fainter $13^{\text {th }}$ magnitude. Not part of the survey, but nevertheless still an interesting observation, was Nanson's conclusion that C (WDS magnitude of 8.06) was distinctly brighter than A (WDS magnitude of 8.09), which was confirmed during the course of observations on two separate nights at several magnifications.

2.3 Photometry and Astrometry Results

Several hundred images taken with iTelescope remote telescopes were in a first step plate solved and stacked with AAVSO VPhot. The stacked images were then plate solved with Astrometrica with URAT1 refer-

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga
ence stars with Vmags in the range 10.5 to 14.5 mag . The RA/Dec coordinates resulting from plate solving with URAT1 reference stars in the 10.5 to 14.5 mag range were used to calculate Sep and PA using the formula provided by R. Buchheim (2008). Err_Sep is calculated as
with $d R A$ and $d D e c$ as average RA and Dec plate solv-

$$
\text { Err_Sep }=\sqrt{d R A^{2}+d D e c^{2}}
$$

ing errors. Err_PA is the error estimation for PA calculated as
in degrees assuming the worst case that Err_Sep points

$$
E r r_{-} P A=\arctan \left(\frac{E r r_{-} S e p}{S e p}\right)
$$

in the right angle to the direction of the separation means perpendicular to the separation vector. Mag is the photometry result based on UCAC4 reference stars with Vmags between 10.5 and 14.5mag. Err_Mag is calculated as
with dVmag as the average Vmag error over all used

$$
E r r_{-} M a g=\sqrt{d V m a g^{2}+\left[2.5 \log _{10}(1+1 / S N R)\right]^{2}}
$$

reference stars and $S N R$ is the signal to noise ratio for the given star. The results are shown in Table 2.

3. Summary

Tables 3 and 4 compare the final results of our research with the WDS data that was current at the time we began working on our current group of stars.

In Table 3 the results of our photometry have been averaged for each star. Because we're aware that both the NOMAD-1 and the UCAC4 catalogs are frequently consulted when making WDS evaluations of magnitudes changes, the data from those catalogs has also been included for each of the stars.

Red type has been used in Tables 3 and 4 to call attention to significant differences from the WDS data. With regard to Table 3, those magnitudes that differ by two tenths of a magnitude or more from the WDS values have been highlighted. In Table 4 differences in separation in excess of two-tenths of an arc second are highlighted, as are all position angles which differ by more than a degree.

Subsequent to our measures, as a quality check for our astrometry results we turned to the URAT1 catalog for the most recent precise professional measurements available. We used its coordinates to calculate the Sep
and PA for all objects in this report for which URAT1 data was available and compared these values with our results, which are shown in Table 5.

Acknowledgements:

The following tools and resources have been used for this research:

- Washington Double Star Catalog as data source for the selected objects
- iTelescope: Images were taken with
* iT24: 610 mm CDK with 3962 mm focal length. CCD: FLI-PL09000. Resolution $0.62 \mathrm{arcsec} /$ pixel. V-filter. Located in Auberry, California. Elevation 1405 m
* iT11: 510 mm CDK with 2280 mm focal length. CCD: FLI ProLine PL11002M. Resolution $0.81 \mathrm{arcsec} /$ pixel. B- and VFilter. Located in Mayhill, New Mexico. Elevation 2225m
* iT18: 318 mm CDK with 2541 mm focal length. CCD: SBIG-STXL-6303E. Resolution $0.73 \mathrm{arcsec} /$ pixel. V-filter. Located in Nerpio, Spain. Elevation 1650m
* iT21: 431 mm CDK with 1940 mm focal length. CCD: FLI-PL6303E. Resolution 0.96 arcsec/pixel. V-filter. Located in Mayhill, New Mexico. Elevation 2225m
- AAVSO VPhot for initial plate solving
- AAVSO APASS providing Vmags for faint reference stars (indirect via UCAC4)
- UCAC4 catalog (online via the University of Heidelberg website and Vizier and locally from USNO DVD) for counterchecks
- URAT1 catalog for high precision plate solving
- Aladin Sky Atlas v8.0 for counterchecks
- SIMBAD, VizieR for counterchecks
- 2MASS All Sky Catalog for counterchecks
- URAT1 Survey (preliminary) for counterchecks
- AstroPlanner v2.2 for object selection, session planning and for catalog based counterchecks
- MaxIm DL6 v6.08 for plate solving on base of the UCAC4 catalog
- Astrometrica v4.9.1.420 for astrometry and photometry measurements

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga

Table 2: Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT 19	RA	Dec	dRA	dDec	Sep	ErrSep	PA	Err PA	Mag	$\begin{aligned} & \hline \text { Err } \\ & \text { Mag } \\ & \hline \end{aligned}$	SNR	dVmag	Date	N	Notes
A	004352.145	373337.89	0.07	0.07	9.763	0.099	115.025	0.581	8.452	0.090	209.35	0.09	2015.785	5	1
B	004352.889	373333.76							11.437	0.092	54.01				
A	004352.133	$37 \quad 33 \quad 37.92$	0.06	0.09	9.791	0.108	114.884	0.633	8.408	0.060	141.45	0.06	2015.807	5	1
B	004352.880	373333.80							11.438	0.065	41.93				
A	004352.150	$37 \quad 33 \quad 37.91$	0.06	0.05	9.754	0.078	114.404	0.459	8.483	0.070	188.59	0.07	2015.774	5	2
B	004352.897	373333.88							11.500	0.071	80.33				
A	004352.148	$3733 \quad 37.99$	0.09	0.12	9.771	0.150	113.780	0.879	8.469	0.080	148.35	0.08	2015.779	5	2
B	004352.900	373334.05							11.504	0.083	46.69				
A	004352.146	$\begin{array}{llll}37 & 33 & 37.90\end{array}$	0.03	0.03	9.746	0.042	115.138	0.249	8.418	0.050	297.29	0.05	2015.782	5	2
B	004352.888	373333.76							11.410	0.051	98.11				
A	004352.144	$37 \quad 33 \quad 37.92$	0.065	0.078	9.765	0.102	114.646	0.598	8.446	0.072			2015.785	25	3
B	004352.891	$37 \quad 33 \quad 33.85$							11.458	0.074					
STT29	RA	Dec			Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	DVmag	Date	N	Notes
A	$0118 \quad 53.152$	395747.31	0.09	0.09	20.175	0.127	265.337	0.361	7.452	0.041	137.86	0.04	2015.779	5	1
B	011851.403	395745.67							11.838	0.051	34.46				
A	$01 \quad 18 \quad 53.139$	395747.23	0.09	0.08	20.164	0.120	266.190	0.342	7.452	0.090	217.79	0.09	2015.785	5	1
B	$01 \quad 18 \quad 51.389$	395745.89							11.808	0.093	42.51				
A	011853.142	395747.28	0.04	0.04	20.121	0.057	266.067	0.161	7.390	0.030	360.02	0.03	2015.774	5	2
B	011851.396	395745.90							11.762	0.033	82.82				
A	$0118 \quad 53.138$	395747.29	0.03	0.04	20.122	0.050	266.010	0.142	7.406	0.040	467.70	0.04	2015.782	5	2
B	$0118 \quad 51.392$	395745.89							11.768	0.042	87.00				
A	011853.143	395747.28	0.068	0.067	20.145	0.095	265.901	0.271	7.425	0.055			2015.780	20	3
B	011851.395	395745.84							11.794	0.059					
STT506	RA	Dec			Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	DVmag	Date	N	Notes
A	$23 \quad 48 \quad 35.378$	361628.17	0.08	0.06	20.910	0.100	81.474	0.274	6.953	0.080	220.94	0.08	2015.785	5	1
C	$23 \quad 48 \quad 37.088$	361631.27							11.002	0.082	60.81				
A	$23 \quad 4835.374$	361628.05	0.09	0.07	20.911	0.114	81.447	0.312	6.925	0.070	177.05	0.07	2015.807	5	1
C	$23 \quad 4837.084$	361631.16							10.986	0.073	56.161				
A	$23 \quad 48 \quad 35.385$	361628.13	0.10	0.12	20.910	0.156	81.474	0.428	6.899	0.060	177.092	0.06	2015.779	5	1
C	$23 \quad 48 \quad 37.095$	361631.23							10.962	0.063	54.572				
A	$23 \quad 4835.381$	361628.14	0.04	0.04	20.898	0.057	81.247	0.155	6.926	0.040	419.783	0.04	2015.774	5	2
C	$23 \quad 48 \quad 37.089$	361631.32							10.994	0.041	113.77				
A	$\begin{array}{llll}23 & 48 & 35.383\end{array}$	361628.20	0.04	0.03	20.899	0.050	81.442	0.137	6.933	0.040	435.15	0.04	2015.782	5	2
C	$23 \quad 48 \quad 37.092$	361631.31							10.973	0.041	120.27				
A	$23 \quad 4835.380$	361628.14	0.074	0.071	20.906	0.103	81.417	0.282	6.927	0.060			2015.785	25	3
C	234837.090	361631.26							10.983	0.062					

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \text { STT } \\ & 547 \end{aligned}$	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	
A	000542.367	454841.00	0.06	0.07	5.944	0.092	188.395	0.889	8.959	0.090	142.65	0.09	2015.785	5	4
B	000542.284	$45 \quad 48 \quad 35.12$							9.070	0.090	127.32				
A	000542.378	454841.26	0.11	0.11	6.200	0.156	189.219	1.437	8.958	0.072	57.76	0.07	2015.807	5	4
B	000542.283	$45 \quad 48 \quad 35.14$							9.037	0.073	54.26				
A	000542.362	454841.02	0.03	0.03	6.043	0.042	188.257	0.402	8.947	0.040	227.49	0.04	2015.774	5	5
B	000542.279	$45 \quad 48 \quad 35.04$							9.031	0.040	214.25				
A	000542.356	454841.11	0.08	0.09	6.126	0.120	187.058	1.126	8.959	0.071	121.68	0.07	2015.779	5	5
B	000542.284	454835.03							9.040	0.071	112.05				
A	000542.363	454841.11	0.06	0.06	6.112	0.085	188.163	0.795	8.931	0.050	201.98	0.05	2015.782	5	5
B	000542.280	454835.06							9.017	0.051	149.06				
A	000542.365	454841.10	0.073	0.077	6.085	0.106	188.220	0.998	8.951	0.067			2015.785	25	6
B	000542.282	$45 \quad 48 \quad 35.08$							9.039	0.067					
$\begin{aligned} & \hline \text { STT } \\ & 547 \end{aligned}$	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	
B	000542.284	$45 \quad 48 \quad 35.12$	0.06	0.07	19.704	0.092	332.643	0.268	9.070	0.090	127.32	0.09	2015.785	5	7
P	000541.418	454852.62							13.116	0.100	24.40				
B	000542.283	$45 \quad 48 \quad 35.14$	0.11	0.11	19.951	0.156	333.212	0.447	9.037	0.073	54.26	0.07	2015.807	5	8
P	000541.423	$45 \quad 48 \quad 52.95$							13.163	0.097	15.649				
B	000542.279	454835.04	0.03	0.03	19.681	0.042	333.156	0.124	9.031	0.040	$\begin{aligned} & 214.25 \\ & 9 \end{aligned}$	0.04	2015.774	5	9
P	000541.429	$45 \quad 48 \quad 52.60$							13.030	0.046	$\begin{aligned} & 47.291 \\ & 0 \end{aligned}$				
B	000542.284	$45 \quad 48 \quad 35.03$	0.08	0.09	19.758	0.120	332.588	0.349	9.040	0.071	112.05	0.07	2015.779	5	9
P	000541.414	$45 \quad 48 \quad 52.57$							13.087	0.086	21.17				
B	000542.280	454835.06	0.06	0.06	19.672	0.085	333.142	0.247	9.017	0.051	149.06	0.05	2015.782	5	9
P	000541.430	$45 \quad 48 \quad 52.61$							13.036	0.056	43.71				
B	000542.282	454835.08	0.073	0.077	19.753	0.106	332.949	0.308	9.039	0.067			2015.785	25	10
P	000541.423	$45 \quad 48 \quad 52.67$							13.086	0.080					
STT 30	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	
A	012534.468	313300.73	0.06	0.05	4.267	0.078	245.196	1.049	8.036	0.050	336.30	0.05	2015.782	1	11
B	012534.165	313258.94	0.06	0.05	4.267	0.078	245.196	1.049	11.540	0.053	57.36	0.05	2015.782	1	11
A	012534.463	313300.84	0.10	0.07	4.412	0.122	245.067	1.585	8.042	0.080	181.15	0.08	2015.785	5	12
B	012534.150	313258.98	0.10	0.07	4.412	0.122	245.067	1.585	11.567	0.111	13.72	0.08	2015.785	5	12
A	012534.466	313300.73	0.02	0.04	4.521	0.045	245.567	0.567	8.023	0.040	357.32	0.04	2015.774	5	13
B	012534.144	313258.86	0.02	0.04	4.521	0.045	245.567	0.567	11.599	0.051	34.32	0.04	2015.774	5	13
A	012534.471	313300.68	0.07	0.11	4.245	0.130	244.611	1.759	8.015	0.070	193.11	0.07	2015.779	5	13
B	012534.171	313258.86	0.07	0.11	4.245	0.130	244.611	1.759	11.341	0.076	34.71	0.07	2015.779	5	13
A	012534.467	313300.75	0.069	0.073	4.361	0.100	245.117	1.314	8.029	0.062			2015.780	16	14
B	012534.157	313258.91	0.069	0.073	4.361	0.100	245.117	1.314	11.512	0.077			2015.780	16	14

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT Doubles with Large $\Delta \mathrm{M}$ - Part VII: And Pisces Auriga

Table 2 (conclusion). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT 96	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	Notes
A	050904.370	490719.02	0.07	0.08	20.727	0.106	105.044	0.294	6.572	0.110	229.24	0.11	2016.093	4	29
B	050906.409	490713.64							12.043	0.128	15.96				
A	050904.363	490718.95	0.08	0.06	20.688	0.100	104.959	0.277	6.593	0.100	261.81	0.10	2016.107	5	30
B	050906.399	490713.61							12.142	0.131	12.29				
A	050904.405	490718.15	0.12	0.12	20.385	0.170	104.431	0.477	6.640	0.121	60.25	0.12	2016.108	5	31
B	050906.416	490713.07							12.143	0.127	25.26				
A	050904.383	490718.73	0.10	0.12	20.542	0.156	104.490	0.436	6.538	0.070	186.00	0.07	2016.119	5	31
B	050906.409	490713.59							12.209	0.073	48.83				
A	050904.380	490718.71	0.094	0.098	20.585	0.136	104.733	0.380	6.586	0.102			2016.107	19	3
B	050906.408	490713.48							12.134	0.118					
STT 103	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	Notes
A	051810.599	$33 \quad 22 \quad 15.11$	0.10	0.12	3.929	0.156	56.994	2.277	4.573	0.100	416.07	0.10	2016.107	5	32
B	051810.862	$33 \quad 2217.25$							9.831	0.118	16.88				
A	051810.599	332214.94	0.11	0.12	3.603	0.163	53.762	2.587	4.552	0.120	340.72	0.12	2016.093	1	33
B	051810.831	332217.07							9.497	0.142	13.73				
A	051810.599	332215.02	0.105	0.120	3.764	0.160	55.448	2.427	4.563	0.110			2016.100	6	34
B	051810.847	$33 \quad 2217.16$							9.664	0.131					
STT 104	RA	Dec	dRA	dDec	Sep	ErrSep	PA	ErrPA	Mag	ErrMag	SNR	dVmag	Date	N	
A	052312.642	470117.59	0.11	0.09	21.371	0.142	189.307	0.381	6.849	0.110	204.77	0.11	2016.093	3	35
B	052312.304	470056.50							11.730	0.123	19.15				
A	052312.644	470117.55	0.07	0.06	21.427	0.092	189.227	0.247	6.837	0.090	227.72	0.09	2016.107	5	36
B	052312.308	470056.40							11.723	0.105	19.64				
A	052312.666	470117.29	0.12	0.08	21.325	0.144	189.857	0.387	6.644	0.071	80.81	0.07	2016.108	5	37
B	052312.309	470056.28							11.637	0.075	38.85				
A	052312.647	470117.44	-0.10	0.11	21.195	0.149	189.077	0.402	6.721	0.070	210.90	0.07	2016.119	5	37
B	052312.320	470056.51							11.720	0.072	62.61				
A	052312.650	470117.47	0.102	0.087	21.329	0.134	189.367	0.359	6.763	0.087			2016.107	18	3
B	$05 \quad 2312.310$	470056.42							11.703	0.096					

STT Doubles with Large $\Delta \mathrm{M}$ - Part VII: And Pisces Auriga

Notes to Table 2

1. iT24 stack $5 \times 1 \mathrm{~s}$. A too bright for reliable photometry
2. iT24 stack 5×3 s. A too bright for reliable photometry
3. A too bright for reliable photometry
4. iT24 stack $5 \times 1 \mathrm{~s}$. A and B too bright for reliable photometry
5. iT24 stack $5 \times 3 \mathrm{~s}$. A and B too bright for reliable photometry
6. A and B too bright for reliable photometry
7. iT24 stack $5 \times 1 \mathrm{~s}$. B too bright for reliable photometry
8. iT24 stack $5 \times 1 \mathrm{~s}$. B too bright for reliable photometry. SNR P <20
9. iT24 stack 5×3 s. B too bright for reliable photometry
10. B too bright for reliable photometry
11. iT24 1x3s. A too bright for reliable photometry. Touching star disks
12. iT24 stack 5x1s. A too bright for reliable photometry. Overlapping star disks. SNR B <20
13. iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. Overlapping star disks
14. A too bright for reliable photometry
15. iT24 1x3s. A and B too bright for reliable photometry
16. iT24 stack $5 \times 1 \mathrm{~s}$. A and C too bright for reliable photometry
17. iT24 stack $5 \times 3 \mathrm{~s}$. A and C too bright for reliable photometry
18. A and C too bright for reliable photometry
19. iT24 1x3s. A too bright for reliable photometry. SNR D<20
20. iT24 stack $5 \times 1 \mathrm{~s}$. A too bright for reliable photometry. SNR D<10
21. iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
22. iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR D<10
23. A too bright for reliable photometry. SNR D<20
24. iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR B<20
25. iT18 stack 5×3 s. A too bright for reliable photometry
26. iT24 stack 5×3 s. Image quality rather low. A too bright for reliable photometry
27. iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR $\mathrm{C}<20$
28. iT24 stack 5×3 s. Image quality rather low. A too bright for reliable photometry
29. iT18 stack 4×3 s. A too bright for reliable photometry. SNR $B<20$
30. iT18 stack 5×3 s. A too bright for reliable photometry. SNR B<20
31. iT24 stack 5×3 s. Image quality rather low. A too bright for reliable photometry
32. iT18 stack $5 \times 1 \mathrm{~s}$. Heavily overlapping star disks. SNR $B<20$
33. iT18 1x1s. Heavily overlapping star disks. SNR B<20
34. A and B too bright for reliable photometry. A too bright for reliable astrometry
35. iT18 stack $3 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR $B<20$
36. iT18 stack 5×3 s. A too bright for reliable photometry. SNR B<20
37. iT24 stack 5×3 s. A too bright for reliable photometry
38. iT24 stack 5×3 s. A too bright for reliable photometry

STT Doubles with Large $\mathbf{\Delta M}$ - Part VII: And Pisces Auriga

Table 3. Photometry and Visual Results Compared to WDS

			$\begin{aligned} & \text { WDS } \\ & \text { Mag } \end{aligned}$	$\begin{aligned} & \text { NOMAD-1 } \\ & \text { VMag } \end{aligned}$	$\begin{gathered} \text { UCAC4 } \\ \text { VMa } \end{gathered}$	UCAC4 f. mag	Average of Photometry Measures	Results of Visual Observations
STT	19		11.40	-	-	11.247	11.458	One observation that WDS magnitude is about right and one suggesting as faint as 12.3
STT	29		11.70	11.570	-	11.746	11.794	One observation suggesting WDS magnitude is correct and one suggesting a bit brighter
STT	506		10.80	10.830	-	10.969	10.983	One observation suggesting C to be a bit brighter than WDS value, one suggesting a magnitude of about 11.9
STT	547		9.15	-	9.096	-	9.039	No estimations made of magnitude
STT	547		13.40	-	-	13.134	13.086	One observation that P is brighter than WDS value, one that B is fainter than 13.0
STT	30		11.80	12.864	-	-	11.512	One observation suggesting B could be no brighter than the WDS value, one observation suggesting the WDS value is a bit too bright.
STT	30		8.06	7.986	8.923	8.715	8.001	Two observations that C is brigher than A (WDS magnitude of 8.09)
STT	30		14.00	15.730	-	14.376	14.345	Not seen by either of the two observers
STT	94		11.10	-	-	11.367	11.566	Two observations that B is fainter than the WDS value
STT	94		11.00	12.310	-	11.702	12.114	Two observations that C is fainter than B
STT	96		11.10	-	-	11.978	12.134	One observation that the WDS value for B is about right based on visual difficulty, one that B is much fainter than the WDS value
STT	103		10.60	-	-	-	9.664	Two observations that the WDS value for B is about right 1)
STT	104	B	11.10	9.070	-	11.879	11.703	One observation suggesting a magnitude of about 11.9 for B, one observation that the WDS value is about right

Table 4. Astrometry Results Compared to WDS

			WDS Coordinates	WDS Sep	WDS PA	Astrometry Coordinates	Astrometry Sep	Astrometry PA
STT	19		$\begin{aligned} & 00: 43: 52.14 \\ & +37: 33: 38.0 \end{aligned}$	9.70	115	$\begin{array}{lrr} \hline 00 & 43 & 52.144 \\ +37 & 33 & 37.92 \end{array}$	9.765	114.646
STT	29		$\begin{aligned} & 01: 18: 53.15 \\ & +39: 57: 48.0 \end{aligned}$	20.10	266	$\begin{array}{rrr} 01 & 18 & 53.143 \\ +39 & 57 & 47.28 \end{array}$	20.145	265.901
STT	506		$\begin{aligned} & 23: 48: 35.39 \\ & +36: 16: 28.4 \end{aligned}$	21.10	80	$\begin{array}{lll} 23 & 48 & 35.380 \end{array}$	20.906	81.417
STT	547		$\begin{aligned} & 00: 05: 41.00 \\ & +45: 48: 37.4 \end{aligned}$	6.0	187	$\begin{array}{lrr} 00 & 05 & 42.365 \\ +45 & 48 & 41.10 \end{array}$	6.085	188.220
STT	547		$\begin{aligned} & 00: 05: 41.00 \\ & +45: 48: 37.4 \end{aligned}$	18.10	340	$\begin{array}{lrr} 00 & 05 & 42.365 \\ +45 & 48 & 41.10 \end{array}$	19.753	332.949
STT	30		$\begin{aligned} & 01: 25: 34.17 \\ & +31: 33: 01.9 \end{aligned}$	4.60	245	$\begin{array}{rrr} 01 & 25 & 34.467 \\ +31 & 33 & 00.75 \end{array}$	4.361	245.117
STT	30		$\begin{aligned} & 01: 25: 34.17 \\ & +31: 33: 01.9 \end{aligned}$	57.20	106	$\begin{array}{rrr} 01 & 25 & 34.467 \\ +31 & 33 & 00.75 \end{array}$	56.648	105.667
STT	30		$\begin{aligned} & 01: 25: 34.17 \\ & +31: 33: 01.9 \end{aligned}$	21.40	195	$\begin{array}{rrr} 01 & 25 & 34.467 \\ +31 & 33 & 00.75 \end{array}$	21.368	203.554
STT	94		$\begin{aligned} & 05: 07: 22.26 \\ & +50: 18: 20.2 \end{aligned}$	17.90	305	$\begin{array}{lll} 05 & 07 & 22.271 \\ +50 & 18 & 19.96 \end{array}$	17.942	305.073
STT	94	AC	$\begin{aligned} & 05: 07: 22.26 \\ & +50: 18: 20.2 \end{aligned}$	24.90	66	$\begin{array}{rrr} 05 & 07 & 22.271 \\ +50 & 18 & 19.96 \end{array}$	25.360	65.722
STT	96		$\begin{aligned} & 05: 09: 04.40 \\ & +49: 07: 18.8 \end{aligned}$	20.60	105	$\begin{array}{lll} 05 & 09 & 04.380 \\ +49 & 07 & 18.71 \end{array}$	20.585	104.733
STT	103	AB 1)	$\begin{aligned} & 05: 18: 10.56 \\ & +33: 22: 17.8 \end{aligned}$	4.10	55	$\begin{array}{lrrr} 05 & 18 & 10.599 \\ +33 & 22 & 15.02 \end{array}$	3.764	55.448
STT	104		$\begin{aligned} & 05: 23: 12.61 \\ & +47: 01: 17.9 \end{aligned}$	21.40	190	$\begin{array}{lrr} 05 & 23 & 12.650 \\ +47 & 01 & 17.47 \end{array}$	21.329	189.367

[^0]
STT Doubles with Large $\Delta \mathrm{M}$ - Part VII: And Pisces Auriga

Table 3.3: Astrometry Results Compared with URAT1 Coordinates

| Object | URAT1
 Sep | iTelescope
 Sep | Err Sep | Within
 Error
 Range? | URAT1 PA | iTelescope
 PA | Err PA | Within
 Error
 Range? |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| STT 19 AB | 9.771 | 9.765 | 0.102 | Yes | 115.116 | 114.646 | 0.598 | Yes |
| STT 29 AB | 20.134 | 20.145 | 0.095 | Yes | 266.040 | 265.901 | 0.271 | Yes |
| STT 506 AC | 20.794 | 20.906 | 0.103 | No | 81.410 | 81.417 | 0.282 | Yes |
| STT 547 AB | 6.046 | 6.085 | 0.106 | Yes | 187.231 | 188.220 | 0.998 | Yes |
| STT 547 BP 1) | 18.752 | 19.753 | 0.106 | No | 337.258 | 332.949 | 0.308 | No |
| STT 30 AC 2) | 56.754 | 56.648 | 0.100 | No | 105.642 | 105.667 | 0.101 | Yes |
| STT 30 AD 2) | 21.261 | 21.368 | 0.100 | No | 203.050 | 203.554 | 0.268 | No |
| STT 94 AB | 17.883 | 17.942 | 0.132 | Yes | 305.126 | 305.073 | 0.420 | Yes |
| STT 94 AC | 25.357 | 25.360 | 0.132 | Yes | 65.729 | 65.722 | 0.297 | Yes |
| STT 96 AB | 20.757 | 20.580 | 0.136 | No | 104.970 | 104.733 | 0.380 | Yes |
| STT 104 AB | 21.328 | 21.329 | 0.134 | Yes | 189.508 | 189.367 | 0.359 | Yes |

1) "Negative" quality control result due to the high proper motion of STT 547 B ; the given values for separation and PA of STT 547 BP should be quite correct for the given observation date.
2) "Negative" quality control result probably also due to the high proper motion of most but not all components of STT 30

(Continued from page 79)

References

Buchheim, Robert, 2008, "CCD Double-Star Measurements at Altimira Observatory in 2007", Journal of Double Star Observations, 4, 27-31. Formulas for calculating Separation and Position Angle from the RA Dec coordinates given as

$$
\text { sep }=\sqrt{\left[\left(R A_{2}-R A_{1}\right) \cos \left(D e c_{1}\right)\right]^{2}+\left(D e c_{2}-D e c_{1}\right)^{2}}
$$

in radians and .

$$
P A=\arctan \left(\frac{R A_{2}-R A_{1} \cos \left(D e c_{1}\right)}{D e c_{2}-D e c_{1}}\right)
$$

in radians depending on quadrant
Burnham, S.W., 1874, "A Fifth Catalogue of 71 New Double Stars", Monthly Notices of the Royal Astronomical Society, 35, 31-48. (ADS bibliographic codes 1874MNRAS..35...31B and 1874MNRAS..35...40).
Burnham, S.W. 1906, A General Catalogue of Double Stars Within 120° of the North Pole, Part II, University of Chicago Press, Chicago.

Greaney, Michael, 2012, "Some Useful Formulae" in R.W. Argyle, Observing and Measuring Visual

Double Stars, 2nd Edition, p 359, Springer Press, New York.

Hussey, W.J., 1901, Micrometrical Observations of the Double Stars Discovered at Pulkowa Made with the Thirty-Six-Inch and Twelve-Inch Refractors of Lick Observatory, pp. 14-16, A.J. Johnston, Sacramento.

Knapp, Wilfried; Nanson, John; Smith, Steven, 2015, "STT Doubles with Large $\Delta \mathrm{M}$ - Part I: Gem", Journal of Double Star Observations, 11, 390-401.

Knapp, Wilfried; Nanson, John; Smith, Steven, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part II: Leo and Uma", Journal of Double Star Observations, 12, 110-126.

Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large Δ M - Part III: Vir, Ser, CrB, Com and Boo", Journal of Double Star Observations, 12, 127 -141.
Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part IV: Oph and Her", Journal of Double Star Observations, 12, 361-373.
Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part V: Aql, Del, Cyg and Aqr", Journal of Double Star Observations, 12, 474 484.

Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large Δ M - Part VI: Cyg Multiples", Journal

[^0]: 1) These results have to be taken with caution due to photometry and astrometry issues with the too bright primary (CCD saturation and overlapping star disks.
