STT Doubles with Large $\Delta \mathrm{M}$ - Part VI: Cygnus Multiples

Wilfried R.A. Knapp
Vienna, Austria
wilfried.knapp@gmail.com
John Nanson
Star Splitters Double Star Blog
Manzanita, Oregon
jnanson@nehalemtel.net

Abstract

The results of visual double star observing sessions suggested a pattern for STT doubles with large delta_M of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Of these objects we found three rather complex multiples in Cygnus of special interest so we decided to write a separate report to have more room to include the non STT components as well. Again like for the other objects covered so far several of the components show parameters quite different from the current WDS data.

Change in Procedure

With the availability of URAT1 for plate solving in the northern skies we decided to switch from UCAC4 to URAT1 to get results of higher precision and avoid problems with proper motion issues. We changed further the plate solving setup from Linear Fit to 4th-Order Fit resulting in a substantial reduction of the average plate solving error due to better adaption to the Corrected Dell-Kirkham optics used for imaging.

Introduction

As follow up to our previous STT reports, we continue in the constellation of Cygnus with 3 multiples with a rather complex structure (see Table 1). All values are based on WDS data as of the beginning of 2016.

Further Research

Following the procedure for the earlier parts of our report we concluded again that the best approach would be to check historical data on all objects, observe them visually with the target of comparing with the existing data and obtain as many images as possible suitable for photometry.

Historical Research and Catalog Comparisons

Each of the three multiple stars in this survey have notable aspects worth further investigation. Three main
research sources were used for this section of this paper, the first of which was W.J. Hussey's Micrometrical Observations of the Double Stars Discovered at Pulkowa, published in 1901, which provided preliminary historical information on each of the stars. Hussey's book includes his observations and measures of all the stars originally listed in Otto Wilhelm Struve's 1845 Pulkovo Catalog, as well as data beginning with the date of first measure and continuing through the following years up to 1900. That data, plus inclusion of the background for the Pulkovo Catalog, makes Hussey's book a valuable source of reference. Also consulted was S.W. Burnham's A General Catalogue of Double Stars Within 121° of the North Pole, Part II, for information on each of the three stars. In addition, Bill Hartkopf of the USNO graciously provided the text files for 425 and STT 433.

STT 425 Otto Struve measured the first two discovered components of STT 425 in 1847 (27.7° and 12.18"), which he designated AB. However S.W. Burnham discovered a much closer companion in 1890 (119.9° and $2.30^{\prime \prime}$) with the Lick 36 inch refractor (also observed by Hussey with the Lick 12 inch refractor), and that pair became the new AB , while the pair Otto Struve discovered became AC. The star now designat-

STT Doubles with Large $\Delta \mathrm{M}$ - Part VI: Cygnus Multiples

Table 1. WDS catalog Data at the Beginning of 2016 for the Selected STT Objects

Name		ID	RA	Dec	Sep	PA	M1	M2	$\Delta \mathrm{M}$
BU449	AB	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	6.2	14	7.67	12.70	5.03
STT447	AC	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	13.7	176	7.67	12.20	4.53
BU449	AD	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	18.7	248	7.67	13.00	5.33
STT447	AE	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	28.6	45	7.67	8.48	0.81
ABH148	AG	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	33.8	337	7.67	14.80	7.13
ABH148	AH	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	74.2	263	7.67	13.79	6.12
ABH148	AI	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	92.7	271	7.67	11.65	3.98
ABH148	AJ	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	71.3	94	7.67	13.88	6.21
ABH148	AK	$21395+4144$	$21: 39: 28.710$	$+41: 43: 36.00$	75.0	49	7.67	11.65	3.98
FOX262	EF	$21395+4144$	$21: 39: 30.520$	$+41: 43: 36.00$	42.0	46	8.48	11.56	3.08
STT433	AB	$21179+3454$	$21: 17: 55.070$	$+34: 53: 48.80$	14.2	222	4.36	10.00	5.64
STT433	AC	$21179+3454$	$21: 17: 55.070$	$+34: 53: 48.80$	21.2	181	4.36	9.95	5.59
SLE382	AD	$21179+3454$	$21: 17: 55.070$	$+34: 53: 48.80$	57.0	308	4.36	12.00	7.64
BU9011	AE	$21179+3454$	$21: 17: 55.070$	$+34: 53: 48.80$	34.2	67	4.36	10.00	5.64
STT433	BC	$21179+3454$	$21: 17: 54.290$	$+34: 53: 37.10$	10.1	141	10.00	10.00	0.00
BU1210	AB	$21001+4841$	$21: 00: 06.610$	$+48: 40: 45.90$	1.4	104	7.34	12.20	4.86
STT425	AC	$21001+4841$	$21: 00: 06.610$	$+48: 40: 45.90$	17.9	27	7.34	10.80	3.46
STT425	AE	$21001+4841$	$21: 00: 06.610$	$+48: 40: 45.90$	44.9	16	7.34	10.61	3.27
STT425	CD	$21001+4841$	$21: 00: 07.409$	$+48: 41: 01.707$	4.5	132	10.5	10.90	0.40

ed as the D component was discovered by Struve in 1851, which he measured from the star he had previously designated as B (now C) at a position angle of 135°, but didn't include a separation, although Hussey (1901, p. 174) includes a comment that Struve came up with a distance of $4.11^{\prime \prime}$. That leaves the E component, which was first measured by S.W. Burnham in 1898 at 18° and $45.17^{\prime \prime}$.

The last two measures of the AB pair discovered in 1890 by Burnham were made in 1924 and shows a surprising difference in position angle and separation, as seen in Table 2. We were able to track down the publication containing the 1924.900 measure, verified the data listed in the WDS text file matched the published data, and also found it was made using the 28 inch refractor at Greenwich by R.T. Cullen. Because of the 4.86 magnitude differential between the two components, the secondary is so well hidden in the glare of the primary that it has not been detected in the numerous photographic surveys we've checked (NOMAD-1, UCAC4, URAT1, Hipparcos, GSC 2.3, Tycho, and USNO A-2 and B-1). Our efforts at photographing the secondary met with the same results. A new measure of the AB pair would be welcome if for no other reason than to verify that the 1924.900 PA is an anomaly.

A comparison of the various components of STT 425 shows very little change in PA and separation with the exception of the AC pair (Table 3). Since O. Struve's 1847 discovery, the pair has widened from $12.18^{\prime \prime}$ to $17.85^{\prime \prime}$ as of the most recent measure in the WDS (2003). Our measure for the pair was 18.142",

Table 2. Data for STT 425 AB (BU
1210) from the WDS

Date	PA	Sep
1890.630	119.9	2.30
1898.420	117.2	2.35
1898.600	120.2	2.54
1901.623	117.2	2.40
1903.550	118.6	2.03
1924.810.	117.1	2.24
1924.900	103.9	1.43

Table 3. Data for STT 425 AC from the WDS

Date	PA	Sep
1847.490	27.7	12.18
1867.000	29.9	12.72
1868.430	29.7	12.81
1890.630	28.6	13.80
1898.450	28.0	13.80
1898.548	45.2	13.37
1898.582	46.8	13.55
1898.600	28.0	13.98
1900.640	26.9	14.35
1901.623	27.8	14.13
1902.540	28.4	14.33
1903.570	29.1	14.08
1907.880	28.2	14.44
1924.810	27.4	14.91
1999.470	26.7	17.79
2000.690	27.6	17.53
2003.488	26.9	17.85

STT Doubles with Large $\Delta \mathrm{M}$ - Part VI: Cygnus Multiples

which indicates the separation has continued to widen.
The two position angles of 1898.548 and 1898.582 stand out as anomalous in the data in Table 3. The WDS text file shows those measures were made by Hussey and are from his 1901 book used as a reference for this paper. A look at Hussey's data on p. 174 of that book shows three 1898 measures with PA's of 28.1°, 29.2°, and 28.4°, which average out to the 28.6° number he lists in the book for 1898.57. His three 1898 separation measures were $14.10^{\prime \prime}, 13.97{ }^{\prime \prime}$, and $13.92^{\prime \prime}$, which average out to the $14.0^{\prime \prime}$ number listed in the book for the 1898.57 date. Consequently it appears the PA's of 45.2° and 46.8° in the WDS text file are incorrect.

STT 433 (Upsilon Cygni) This is a complex multiple star with a complex past, comprised of five components and two additional WDS designations beyond STT 433: SLE 382 for the AD pair and BU 9011 for the AE pair.

The AB pair was first seen by John Herschel in 1827, who provided estimated measures of 210° and 21". Otto Struve added the first specific measures in 1849 , which were 219.4° and $14.91 "$. John Herschel was also the first to look at the AC components, again in 1827, and again estimated the measures (180° and 30"), followed by Otto Struve with actual measures in 1849 (177.6° and 21.16"). The AD/SLE 382 pair is credited to G. Soulie, but the WDS text file data shows it was first noticed by Philip Fox in 1912. However, our search through the WDS source could only turn up this short comment by Fox: "Star (12.5) in 309° : 1' " (Fox, 1915, p. 199). Soulie's astrographic measures were made in 1982 according to the text file, and it appears Fox's observation was added to the WDS
after 2006.
The component which is now designated as E was first noticed by S.W. Burnham in 1874 (Burnham, 1874, p. 46). He estimated the distance and PA of what is now the AE pair, and repeated those comments in his 1906 catalog (shown in Figure 1, where he used a designation of D). It appears he never returned to make specific measures of the two stars. The out of sequence 9011 number was added by the WDS at some point after 2006. (A first look at the 1874 source referred to in the WDS text file failed to turn up Burnham's observation, but a closer look at the MNRAS titles in the SAO/ NASA ADS catalog led to the discovery that Burnham's article had been split into two parts, with the second part listed under an erroneous title. We've included both ADS bibliographic codes in the sources section of this paper.).

STT 447 With a total of eleven components you almost need a scorecard to keep track of all the members of this system, especially since the designations have been frequently revised as new components were added. Table 4 shows the designations in use in 1898 when Hussey published his Micrometrical Observations of the Double Stars Discovered at Pulkowa and the changes made in 1906 by Burnham (which are also the designations currently used in the WDS) in his General Catalogue of Double Stars.

The observational history of STT 447 goes back to September 17, 1783, when William Herschel cataloged it as H III 110. He measured what are now the AC and AE pairs, but also described H III 110 as quadruple. Although he didn't provide any measures for it, the fourth star to which he referred - "Position almost in line with the two largest." (Herschel, 1784, p. 90) - can

No. 289 (Triple).

This fine triple is in the field with v Cygni ($\mathrm{O} \mathrm{\Sigma} 43$) 24° following, and $1^{\prime} 43^{\prime \prime}$ north. The close pair was subsequently seen perfectly at Hanover, and from a casual observation, I think my $6-\mathrm{in}$. will at least make the elongation obvious. The third star is very small, even with the great telescope. This star is Weisse XXI. 289. v Cygni has a third companion D in the direction of 60°, at a little less then twice the distance of the companion \mathbf{C} of the Pulkowa Catalogue.
from
A Fifth Catalogue of 71 New Double Stars by S.W. Burnham, p. 46

Figure 1. Burnham's entry for STT 433.A

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

Table 4. Changes in STT 447 Designations Between 1898 and 1906

Hussey Designation	Current Designation
AD	AB
AC	AC
AE	AD
AB	AE

be identified by looking at Figure 2, where AB and E (Herschel's two "largest" stars) are in line with the star now labeled as F.

In addition to the STT 447 designation, there are three more WDS designations within the group. S.W. Burnham discovered and measured the B and D components in 1876 with the $18 \frac{1}{2}$ inch refractor at the Dearborn Observatory. The AB and AD pairs are designated as BU 449. Philip Fox brought William Herschel's fourth star into the system in 1895 when he measured the distance and position angle between it and the E component, resulting in EF being designated as Fox 262.

That leaves the last five components, G through K, which were added in 1987 by H.A.Abt, although the first measures of the AI and AK pairs appear to have
been made from photographic plates since the WDS date of first measure is 1895 . The AG, AH, AI, AJ, and AK pairs are all designated as ABH 148.

There has been very little change in the separations of the eleven components of this system, which is not surprising considering the distance of STT 447 A is 815 light years. The WDS Catalog assigns a code of "U" to each of the STT 447 components, which characterizes all members as non-physical.

Visual Observations

Both Nanson and Knapp made visual observations of the stars included in this report. Nanson used a $152 \mathrm{~mm} \mathrm{f} / 10$ refractor, while Knapp utilized 140mm and 185 mm refractors as well as a masking device to evaluate what could be seen at lesser apertures.

STT 425 (Cyg): Knapp looked at STT 425 twice. During the first observation, using the masking device he could detect C with the aperture limited to 60 mm , suggesting it's slightly brighter than the WDS value of 10.80. The limiting aperture during the second observation was 80 mm , which would indicate a confirmation of the WDS magnitude. Nanson observed STT 425 once with the six inch refractor and found C (10.80) and E (WDS magnitude 10.61) appeared to be about the same magnitude, both of which were slightly brighter than a comparison star with a Vmag of 11.586, indicating the WDS magnitudes are about right.

Figure 2. Aladin image of STT 447 with all components labeled.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

The CD pair (separation of $4.5^{\prime \prime}$, WDS magnitudes of 10.80 and 10.90) were resolved at 152 x and 304 x . D appeared to be about half a magnitude fainter than C. It was obvious the CD pair is not the evenly matched pair indicated by the WDS magnitudes.

STT 433 (Cyg): Nanson observed STT 433 once and was able to see B and C clearly at $84 x$, but lost both of them in the glare of the primary when adding additional magnification because of poor seeing conditions. Both of those stars were close matches for a comparison star with a Vmag of 9.901, suggesting their WDS magnitudes (10.0 and 9.95 , respectively) should be reasonably close. He spent several minutes searching for D and finally saw it at 253 x with averted vision, leading to the conclusion that it may be close to $13^{\text {th }}$ magnitude since it should have been easier to see if the WDS magnitude of 12.0 is correct. He searched repeatedly for E, but never saw it, suggesting the WDS magnitude of 10.0 is incorrect.

Knapp observed STT 433 twice. During the first observation he could detect B at 200 x with the aperture reduced to 93 mm , suggesting B is at least half a magnitude fainter than the WDS's 10.0. C could be seen at 200x with the aperture reduced to 80 mm , also suggesting it may be half a magnitude fainter than the WDS's 9.95. During the second observation, B was visible at 180x with the aperture reduced to 90 mm , again suggesting it may be fainter than the WDS value of 10.0 .

STT 447 (Cyg): Knapp observed this complex multiple star twice. Using the aperture mask, each time he found C appeared to be about a magnitude brighter than the WDS value of 12.20. Nanson looked at STT 447 once during conditions of poor transparency. Using magnifications of 152 x and 253 x on the six inch refractor, he also found C to be about a magnitude brighter than the WDS value based on comparison with the 11.56 magnitude F component. C was a bit easier to see than I (WDS magnitude of 11.65).

Looking at the other components, he concluded the WDS magnitude of the I component is correct or very close to correct based on a comparison star with a Vmag of 11.244 . The I component seemed to be fainter than 11.56 magnitude F , but the combined brightness of F and K (WDS value of 11.65) very likely makes F appear brighter than it is (K was hidden in the glare of F). D was glimpsed once with averted vision - given the poor transparency, it's possible D is slightly brighter than the WDS value of 13.0.

Photometry and Astrometry Results

Several hundred images taken with iTelescope remote telescopes were in a first step plate solved and stacked with AAVSO VPhot. The stacked images were
then plate solved with Astrometrica with URAT1 reference stars with Vmags in the range 10.5 to 14.5 mag . The RA/Dec coordinates resulting from plate solving with URAT1 reference stars in the 10.5 to 14.5 mag range were used to calculate Sep and PA using the formula provided by R. Buchheim (2008). Err_Sep is calculated as $\operatorname{SQRT}\left(\mathrm{dRA}^{\wedge} 2+\mathrm{dSep}^{\wedge} 2\right)$ with $\mathrm{dR} \overline{\mathrm{A}}$ and dDec as average RA and Dec plate solving errors. Err_PA is the error estimation for PA calculated as arctan (Err_Sep/Sep) in degrees assuming the worst case that Err_Sep points in the right angle to the direction of the separation means perpendicular to the separation vector. Mag is the photometry result based on UCAC4 reference stars with Vmags between 10.5 and 14.5 mag . Err_Mag is calculated as square root of ($\mathrm{dVmag}^{\wedge} 2+$ $\left.(2.5 * \log 10(1+1 / \mathrm{SNR}))^{\wedge} 2\right)$ with dVmag as the average Vmag error over all used reference stars and SNR is the signal to noise ratio for the given star. The results are shown in Table 5.

Summary

Tables 6 and 7 compare the final results of our research with the WDS data that was current at the time we began working on our current group of stars.

In Table 6 the results of our photometry have been averaged for each star. Because we're aware that both the NOMAD-1 and the UCAC4 catalogs are frequently consulted when making WDS evaluations of magnitudes changes, the data from those catalogs has also been included for each of the stars.

Red type has been used in Tables 6 and 7 to call attention to significant differences from the WDS data. With regard to Table 6, those magnitudes that differ by two tenths of a magnitude or more from the WDS values have been highlighted. In Table 7 differences in separation in excess of two-tenths of an arc second are highlighted, as are all position angles which differ by more than a degree.

Subsequent to our measures, as a quality check for our astrometry results we turned to the URAT1 catalog for the most recent precise professional measurements available. We used its coordinates to calculate the Sep and PA for all objects in this report for which URAT1 data was available and compared these values with our results, which are shown below in Table 8.

Acknowledgements

The following tools and resources have been used for this research:

- Washington Double Star Catalog as data source for the selected objects
- iTelescope: Images were taken with

STT Doubles with Large $\mathbf{\Delta M}$－Part VI：Cygnus Multiples
Table 5．Photometry and astrometry results for the selected STT objects．Date is the Bessel epoch in 2015 and N is the number of images（usually with 1s exposure time）used for the reported values．iT in the Notes column indicates the telescope used with number of images and exposure time given（Specifications of the used telescopes：See Acknowledgements）．The average results over all used images are given in the line below the indi－ vidual stacks in red and bold．The error estimation over all used images is calculated as root mean square over the individual Err values．The N column in the summary line gives the total number of images used and Date the average Bessel epoch

		\neg		\sim	m		$\stackrel{+}{4}$	$\begin{aligned} & \text { n } \\ & \stackrel{4}{0} \\ & \stackrel{2}{2} \end{aligned}$		\llcorner		\bigcirc		\checkmark		∞		の		$\begin{aligned} & \text { n } \\ & \text { y } \\ & \stackrel{1}{z} \end{aligned}$		＾		\bigcirc						
z		Ω		Ω	\backsim		$\stackrel{\sim}{\square}$	z		\curvearrowleft		\cap		๓		\curvearrowleft		$\stackrel{\sim}{\sim}$		z		\bigcirc		n			\sim			
$\begin{aligned} & \stackrel{\text { q }}{\text { n }} \end{aligned}$		ત		$\underset{6}{\sim}$	గ్		$\stackrel{0}{0}$	$\begin{aligned} & \text { ざ } \\ & \text { ロ̃ } \end{aligned}$		ત્ত		N్రై		$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{\underset{\omega}{6}}{ }$		$\begin{aligned} & \infty \\ & \underset{6}{\infty} \end{aligned}$												
				$\stackrel{n}{\circ}$						$\stackrel{\rightharpoonup}{\circ}$		$\stackrel{n}{\circ}$		$\stackrel{\circ}{\circ}$		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$				$\begin{aligned} & \text { o } \\ & \text { 菏 } \end{aligned}$										
$\underset{\sim}{2}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{\sim}{\mathbf{m}} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & \stackrel{\rightharpoonup}{o} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \\ & \hline \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\stackrel{\rightharpoonup}{-}}$	$\begin{gathered} \stackrel{n}{0} \\ \dot{\infty} \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \underset{\sim}{r} \\ & \stackrel{n}{n} \end{aligned}$		$\frac{\sim}{k}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}\right.$		$\left\lvert\, \begin{aligned} & n \\ & \infty \\ & 0 \\ & 0 \\ & \vdots \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \dot{N} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \dot{o} \\ & \text { ṇ } \\ & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \infty \\ & 0 \\ & \dot{o} \\ & \dot{\circ} \end{aligned}$		$\begin{gathered} \infty \\ \underset{\sim}{\sim} \\ \dot{\sim} \end{gathered}$				$\stackrel{\substack{2 \\ 2}}{ }$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & 0 \\ & \dot{\circ} \\ & \dot{\text { İ}} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & \circ \\ & \dot{q} \end{aligned}$	$\begin{aligned} & \text { n } \\ & 0 \\ & \dot{O} \\ & \hline \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\dot{N}} \\ & \hline \end{aligned}$	$\begin{gathered} n \\ \stackrel{n}{0} \\ \dot{\infty} \\ \sim \end{gathered}$	$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$		
$\left\lvert\, \begin{array}{cc} 4 \\ \hline \end{array}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\left\lvert\, \begin{array}{lll} \infty & n \\ 0 & n \\ 0 & 0 \\ 0 & 0 \\ 0 & 0 \\ \hline \end{array}\right.$	畕荡	$: \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{H}{1} \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{aligned} & -1 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \overrightarrow{-} \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ri} \\ & \dot{0} \\ & \dot{0} \end{aligned}$			Hix	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & n \\ & \hat{N} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \text { ó } \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ro } \\ & \text { ó } \\ & 0 \end{aligned}$	H	－
$\begin{aligned} & \infty \\ & \pi \\ & \pi \end{aligned}$		$\begin{aligned} & \stackrel{~}{0} \\ & \stackrel{\rightharpoonup}{1} \\ & \dot{y} \end{aligned}$	$\begin{aligned} & \underset{\sim}{I} \\ & \underset{\sim}{r} \\ & \stackrel{n}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{+}{\dot{I}} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\prime} \\ & \underset{\sim}{r} \end{aligned}$	$\begin{gathered} m \\ \underset{\sim}{n} \\ \dot{\sim} \\ \underset{\sim}{2} \\ \hline \end{gathered}$		$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$	$\stackrel{n}{\stackrel{n}{2}} \stackrel{+}{\underset{\sim}{r}}$			$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{-} \end{gathered}$				$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \vdots \\ & \vdots \\ & \hdashline \end{aligned}$				$\begin{aligned} & \text { K } \\ & \underset{\Sigma}{\pi} \end{aligned}$	$\begin{aligned} & \stackrel{n}{n} \\ & \underset{\sim}{\wedge} \\ & \stackrel{n}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{n} \\ & \underset{\sim}{m} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\prime} \\ & \underset{广}{r} \\ & \stackrel{r}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{2} \\ & 0 \\ & \dot{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{2} \\ & \vdots \end{aligned}$	$\begin{gathered} \underset{y}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \underset{\sim}{i} \end{aligned}$	$\begin{aligned} & \underset{\sim}{y} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\prime} \end{aligned}$	$\stackrel{\infty}{\sim}$	－
$\left\lvert\, \begin{gathered} \mu \\ \mathbf{n} \\ \mathbf{M} \end{gathered}\right.$							$\begin{aligned} & \stackrel{\circ}{\stackrel{n}{n}} \\ & \stackrel{0}{2} \end{aligned}$	$\left\lvert\, \begin{gathered} \text { 亩 } \\ \hline \end{gathered}\right.$		$\begin{aligned} & \stackrel{6}{\bullet} \\ & \stackrel{1}{\circ} \\ & \stackrel{0}{2} \end{aligned}$		$\underset{\circ}{0}$?		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \stackrel{1}{0} \\ & 0 \end{aligned}$		H										
昏		$\stackrel{m}{n}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{4} \end{aligned}$	$\underset{ }{7}$		$\begin{aligned} & \underset{\sim}{~} \\ & \infty \\ & \dot{m} \\ & \underset{\sim}{2} \end{aligned}$	氏		$\begin{aligned} & \stackrel{\circ}{n} \\ & \stackrel{0}{2} \\ & \stackrel{\rightharpoonup}{\dagger} \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\dagger} \end{aligned}$				出										
		$\dot{\circ}$		$\begin{aligned} & \text { 山̈ } \\ & 0 \\ & 0 \end{aligned}$	\bigcirc		$\begin{aligned} & \stackrel{\imath}{\circ} \\ & \stackrel{0}{0} \end{aligned}$			$\begin{aligned} & \curvearrowleft \\ & \infty \\ & \stackrel{\circ}{\circ} \\ & \dot{\circ} \end{aligned}$		$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{\square}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 . \\ & \hline- \end{aligned}$		$\begin{aligned} & \text { Jु } \\ & \stackrel{0}{0} \\ & \dot{\circ} \end{aligned}$		$\begin{gathered} 4 \\ \boldsymbol{1} \circ \\ 0 \\ 0 \end{gathered}$										
$\begin{aligned} & \stackrel{\circ}{0} \\ & \Omega \end{aligned}$							$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{0}{\dot{0}} \end{aligned}$	Q $\stackrel{0}{0}$ 0		$\begin{aligned} & \text { N } \\ & \stackrel{n}{4} \\ & \underset{\sim}{4} \end{aligned}$						$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{1}{\dot{~}} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \text { ~n } \\ & 0 \\ & \text { - } \\ & - \end{aligned}$		$\stackrel{\circ}{0}$				J						
$\begin{aligned} & 0 \\ & 0.0 \\ & \text { O } \end{aligned}$				$\stackrel{\square}{\circ}$			$\begin{aligned} & \stackrel{7}{0} \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { O } \\ & \text { io } \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} . \end{aligned}$		$$		$\stackrel{0}{\stackrel{\rightharpoonup}{0}}$		$\begin{aligned} & \stackrel{n}{\circ} . \\ & \stackrel{\circ}{0} \end{aligned}$		$\begin{aligned} & \hat{0} \\ & \stackrel{0}{\dot{0}} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$										
留				$\ddot{\circ}$			$\begin{aligned} & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	留		$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{0}{0} \text { • } \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} . \end{aligned}$		$\stackrel{\rightharpoonup}{\circ}$		$\begin{aligned} & \bullet \\ & \stackrel{\circ}{\circ} \\ & \stackrel{.}{0} \end{aligned}$		$\underset{\sim}{\text { gh }}$										
هِ					$\begin{aligned} & \dot{J} \\ & 0 \\ & \dot{b} \\ & m \\ & m \\ & \underset{子}{\prime} \\ & -\quad \end{aligned}$			$\begin{aligned} & \text { O} \\ & \text { ロ́ } \end{aligned}$			$\begin{aligned} & \dot{r} \\ & 0 \\ & \dot{0} \\ & \dot{m} \\ & \tilde{r} \\ & \underset{\sim}{f} \end{aligned}$									$\begin{aligned} & \text { ® } \\ & \text { ® } \end{aligned}$		$\begin{aligned} & o \\ & 0 \\ & \dot{\infty} \\ & \underset{\sim}{n} \\ & \underset{y}{2} \\ & \underset{\gamma}{\prime} \end{aligned}$	$\begin{aligned} & \dot{r} \\ & 0 \\ & \dot{b} \\ & m \\ & m \\ & \text { m } \\ & \underset{子}{\prime} \end{aligned}$		$\begin{aligned} & \dot{\prime} \\ & \infty \\ & \dot{n} \\ & m \\ & m \\ & \\ & \underset{子}{\prime} \end{aligned}$			$\begin{aligned} & \underset{\infty}{\infty} \\ & \infty \\ & \infty \\ & \sim \\ & \underset{子}{\prime} \\ & \underset{\gamma}{\prime} \end{aligned}$		$\stackrel{\infty}{\sim}$
压		$\begin{aligned} & n \\ & \sim \\ & \infty \\ & \infty \\ & \infty \\ & \sim \\ & \sim \\ & \sim \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \infty \\ & \infty \\ & \sim \\ & \sim \\ & \sim \\ & \stackrel{\sim}{N} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{aligned} & \stackrel{m}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \end{aligned}$			允	$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}$		$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\alpha} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\mu} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \\ & \infty \\ & \infty \\ & \sim \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{c} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \dot{\sim} \\ & \underset{\sim}{n} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \hline \end{aligned}$					免	$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{\infty} \\ \underset{\sim}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \dot{\sim} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \underset{\sim}{N} \\ \sim \\ \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \stackrel{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{1} \end{aligned}$	$\begin{gathered} \underset{n}{n} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \\ \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \stackrel{1}{\sim} \\ & \underset{\sim}{\sim} \end{aligned}$	へ
$\begin{aligned} & \text { Ơ } \\ & \text { g' } \\ & \text { 品 } \end{aligned}$	«	m	«	m	«	m	凶ゅ		«	ט	\＆	\bigcirc	«	u	«	\cup	«	－		O ¢ 皿	«	－	«	－	«	－	«	－	«	\bigcirc

STT Doubles with Large $\Delta \mathrm{M}$－Part VI：Cygnus Multiples
Table 5 （continued）．Photometry and astrometry results for the selected STT objects．

$\begin{aligned} & \text { n } \\ & \text { \#ै } \\ & \text { Z } \end{aligned}$	$\stackrel{H}{7}$		$\stackrel{\text { N }}{\sim}$		$\stackrel{n}{\square}$		$\stackrel{\text { ¢ }}{-}$		$\stackrel{\sim}{\square}$		$\begin{aligned} & \text { y } \\ & \text { d } \\ & \text { z. } \end{aligned}$	$\stackrel{\bullet}{\square}$		$\stackrel{\text { 「 }}{ }$		$\stackrel{\infty}{\sim}$		$\stackrel{\square}{\square}$		$\stackrel{\text {－}}{ }$		$\begin{aligned} & \text { n } \\ & \stackrel{y}{2} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\sim}{\sim}$		N		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$		$\stackrel{\sim}{\sim}$	
z	\curvearrowleft		\curvearrowleft		\sim		\sim		$\stackrel{\sim}{\sim}$		z		ת	Ω	n		\curvearrowleft		Ω		$\stackrel{\sim}{\sim}$	z	\bigcirc			\bigcirc	ぃ		\downarrow	n		
$\begin{aligned} & \stackrel{y}{0} \\ & \text { ñ } \end{aligned}$	ت̇ુ		$\underset{\omega}{\tilde{6}}$		$\stackrel{\circ}{\wedge}$		®్ర		$\stackrel{\infty}{6}$		$\begin{aligned} & \stackrel{\text { 』 }}{\text { n }} \end{aligned}$	تુુ	ت	$\underset{\sim}{\text { N}}$			$\stackrel{\circ}{\circ}$		$\stackrel{0}{6}$		$\stackrel{\infty}{\stackrel{\infty}{6}}$		$\underset{\text { İ}}{ }$			Ň					$\stackrel{\infty}{6}$	
$\begin{aligned} & \text { OU } \\ & \text { E } \\ & \text { En } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{2} \end{aligned}$		$\begin{aligned} & \stackrel{n}{\circ} . \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\stackrel{\infty}{0}}$						$\stackrel{\rightharpoonup}{0} \dot{0}$			$\begin{aligned} & 0 \\ & \dot{0} . \end{aligned}$		$\stackrel{\infty}{\stackrel{\infty}{\circ}}$		$\begin{aligned} & 0 \\ & \text { 0 } \\ & \text { E } \end{aligned}$			$\stackrel{\check{0}}{\stackrel{0}{0}}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$		$\stackrel{\infty}{\stackrel{\infty}{0}}$			
	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{\sim}{n} \\ & \underset{m}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{r} \\ & \underset{\sim}{\mu} \end{aligned}$	$\begin{aligned} & n \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \infty \\ & \underset{m}{n} \end{aligned}$	$\begin{aligned} & \dot{9} \\ & \dot{n} \\ & \dot{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{\sim} \\ & \hline \end{aligned}$	$\begin{gathered} \text { n } \\ \stackrel{y}{\alpha} \\ \dot{\infty} \\ \sim \end{gathered}$	$\begin{gathered} \stackrel{n}{n} \\ \dot{G} \\ \dot{\infty} \\ \sim \end{gathered}$			舀	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{2}{m} \\ & \tilde{m} \end{aligned}$	$\begin{gathered} \tilde{N} \\ \dot{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{\sim}{2}} \\ \underset{\sim}{2} \end{gathered}$	$\begin{aligned} & \dot{o} \\ & 0 \\ & \dot{0} \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\bullet}{\stackrel{\circ}{\infty}} \stackrel{ }{+}$	$\left\lvert\, \begin{aligned} & n \\ & \underset{\sim}{n} \\ & \dot{\infty} \\ & \infty \\ & \sim \end{aligned}\right.$				岳	$\stackrel{\infty}{\sim}$		$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$			$\begin{aligned} & \infty \\ & \bullet \\ & \dot{\sim} \\ & \stackrel{n}{2} \end{aligned}$	$\stackrel{\sim}{0}$	$\begin{aligned} & \underset{\sim}{\underset{~}{\sim}} \\ & \underset{\sim}{2} \end{aligned}$		
惫荡	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{0} \\ & \vdots \\ & \vdots \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	$\begin{aligned} & \underset{\sim}{2} \\ & \stackrel{1}{0} \\ & \vdots \end{aligned}$	$\begin{aligned} & \text { д } \\ & \stackrel{1}{\circ} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{array}{\|l\|l\|} \hline \text { 品菏 } \\ \hline \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ \vdots \\ 0 \\ 0 \end{gathered}$	$\left.\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$	$\begin{aligned} & \mathrm{N} \\ & \mathrm{o} \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 . \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} n \\ \\ \underset{0}{0} \end{gathered}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{n} \\ \vdots \end{gathered}$	$\left\|\begin{array}{c} \underset{\pi}{\circ} \\ \vdots \\ 0 \end{array}\right\|$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{c}}$	$\left\|\begin{array}{cc} 4 & 0 \\ M \\ & \pi \\ \end{array}\right\|$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & -\infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { ザ } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \underset{ }{N} \\ \underset{\sim}{-} \\ 0 \end{gathered}$	$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{ }{I} \\ & \underset{\vdots}{-} \\ & 0 \end{aligned}$	H $\stackrel{1}{0}$ \bigcirc \bigcirc	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$
$\begin{aligned} & \text { O } \\ & \text { n } \end{aligned}$		$\begin{aligned} & n \\ & \underset{\sim}{n} \\ & \vdots \\ & \infty \end{aligned}$		$\left\lvert\, \begin{gathered} 0 \\ \tilde{n} \\ \underset{\sim}{\infty} \end{gathered}\right.$	$\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{\sim} \end{gathered}$	$\underset{\substack{n \\ \\ \infty}}{ }$		$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\infty}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{m} \\ & \stackrel{r}{r} \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \infty \\ & \stackrel{\infty}{u} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{g} \\ & \underset{\sim}{i} \end{aligned}\right.$	$\begin{array}{\|l} \underset{\sim}{\bullet} \\ \stackrel{\rightharpoonup}{r} \\ \underset{\sim}{r} \end{array}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{r} \\ & \stackrel{n}{2} \end{aligned}$			$\begin{aligned} & \infty \\ & 0 \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\infty}{\infty} \underset{\substack{n \\ \underset{\sim}{n}}}{ }$	$\begin{gathered} \infty \\ \stackrel{\infty}{0} \\ \dot{r} \\ \dot{-} \end{gathered}$			$\begin{aligned} & \underset{\sim}{\infty} \\ & \stackrel{\infty}{\dot{\sim}} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\underset{\sim}{\underset{~}{2}}}{\underset{\sim}{r}}$	$\begin{gathered} m \\ \underset{n}{n} \\ \dot{m} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\underset{2}{2}} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \dot{m} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\%}} \stackrel{\sim}{\sim}$	¢ ¢ ¢ ṅ \cdots
品出											䖲台		$\not \square$				$\begin{aligned} & \infty \\ & \stackrel{1}{1} \\ & \stackrel{0}{0} \end{aligned}$	$\dot{\square}$	$\begin{aligned} & 0 \\ & \stackrel{0}{4} \\ & \stackrel{1}{0} \end{aligned}$		$\begin{aligned} & \text { a } \\ & \stackrel{n}{0} \\ & \stackrel{0}{2} \end{aligned}$	芻出				$\begin{aligned} & \text { oे } \\ & \text { O. } \\ & 0 \end{aligned}$						
芯							en in g				㟧				～ $\stackrel{1}{2}$ r．		$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{0}{0} \\ & \dot{0} \\ & \stackrel{m}{m} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{n} \\ & \stackrel{0}{m} \\ & \stackrel{n}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \stackrel{1}{0} \\ & \stackrel{\sim}{m} \end{aligned}$	ム				$\stackrel{\sim}{\sim}$						
$\left\lvert\,\right.$						$\stackrel{\infty}{\stackrel{+}{+}}$											$\begin{aligned} & \stackrel{\infty}{+} \\ & \stackrel{+}{\circ} \end{aligned}$		$\begin{aligned} & \circ \\ & 0 \\ & 0 . \\ & \stackrel{y}{2} \end{aligned}$		$\begin{aligned} & \text { オु } \\ & \stackrel{0}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\left.\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \hline \\ 0 \\ 0 \end{array} \right\rvert\,$				$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$						
$\stackrel{0}{0}$		$\stackrel{\circ}{\dot{\circ}}$									¢		$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$				$\begin{aligned} & \stackrel{\infty}{0} \\ & 0 . \\ & \dot{m} \end{aligned}$		$\begin{aligned} & \underset{\sim}{\underset{m}{c}} \\ & \stackrel{y}{c} \end{aligned}$		$\begin{aligned} & \stackrel{\wedge}{\sim} \\ & \stackrel{m}{m} \end{aligned}$					$\stackrel{\text { m }}{\substack{\text { r }}}$						
$\begin{aligned} & \text { 0 } \\ & \text { ö } \end{aligned}$											$\begin{aligned} & 0 \\ & 0 \\ & \text { ì } \end{aligned}$		$\stackrel{\bullet}{\circ}$	$\stackrel{\rightharpoonup}{\circ}$			$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$		$\stackrel{n}{\circ}$		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$				$\dot{\circ}$						
$\underset{\sim}{\ddot{d}}$											臬		$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$?		$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\stackrel{\rightharpoonup}{\circ}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \end{aligned}$	豝				－						
$\begin{aligned} & \text { O } \\ & \text { ロ } \end{aligned}$	$\begin{aligned} & n \\ & o \\ & \dot{b} \\ & m \\ & m \\ & y \\ & y \end{aligned}$			$\begin{aligned} & \hat{e} \\ & \dot{b} \\ & \dot{n} \\ & m \\ & \underset{\gamma}{-} \\ & \underset{\gamma}{2} \end{aligned}$		$\begin{aligned} & \tilde{\sim} \\ & \stackrel{0}{n} \\ & \sim \\ & \sim \\ & \underset{\gamma}{\prime} \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \dot{0} \\ & \dot{n} \\ & \underset{y}{n} \\ & \vec{y} \end{aligned}$			$\begin{aligned} & \text { © } \\ & \text { ® } \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & \dot{b} \\ & m \\ & m \\ & y \\ & \underset{y}{2} \end{aligned}$					$\begin{aligned} & n \\ & \\ & \dot{\circ} \\ & 0 \\ & \underset{\gamma}{\prime} \\ & \underset{\gamma}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \dot{r} \\ & \vdots \\ & y \\ & y \\ & y \\ & y \end{aligned}$		\mathfrak{l}	$\begin{aligned} & \text { © } \\ & \text { ه́ } \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & \dot{0} \\ & m \\ & m \\ & \underset{y}{2} \\ & \underset{\gamma}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \\ & \stackrel{1}{\sim} \\ & \underset{\sim}{\sim} \\ & \underset{\gamma}{\prime} \end{aligned}$			$\begin{aligned} & r \\ & \infty \\ & \dot{\sim} \\ & \underset{\sim}{n} \\ & \underset{\gamma}{m} \\ & \underset{\gamma}{2} \end{aligned}$			$\begin{aligned} & \infty \\ & \underset{\sim}{u} \\ & \stackrel{1}{\sim} \\ & \sim \\ & \underset{\sim}{\sim} \\ & \underset{\gamma}{2} \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \dot{b} \\ & m \\ & \text { m } \\ & \overrightarrow{7} \end{aligned}$	
岀	$\begin{aligned} & \underset{N}{N} \\ & \dot{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{\infty} \\ \sim \\ N \\ \tilde{N} \\ \underset{\sim}{n} \end{gathered}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 2 \\ & \underset{\sim}{n} \\ & \dot{0} \\ & \dot{m} \\ & \underset{\sim}{2} \\ & - \\ & \hline \end{aligned}$	$\begin{array}{\|c} \underset{N}{N} \\ \dot{\infty} \\ \underset{\sim}{N} \\ \underset{\sim}{N} \\ \underset{N}{2} \end{array}$		宸	$\left\lvert\, \begin{gathered} \underset{N}{N} \\ \underset{\sim}{\infty} \\ N \\ N \\ \tilde{N} \\ \underset{N}{N} \end{gathered}\right.$		$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{0} \\ \underset{\sim}{N} \\ \underset{\sim}{m} \\ \underset{\sim}{2} \end{gathered}$	$\begin{array}{\|c} \stackrel{n}{n} \\ \stackrel{n}{n} \\ \stackrel{\rightharpoonup}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{n} \end{array}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{n} \\ \infty \\ \sim \\ \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{gathered}$	$\begin{gathered} n \\ \sim \\ \\ \underset{\sim}{N} \\ \\ \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{c} \\ & \dot{\infty} \\ & \underset{\sim}{n} \\ & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\lambda} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{\sim}{\infty} \\ \infty \\ \sim \\ \underset{\sim}{N} \\ \underset{\sim}{2} \end{array}$		宸	$\begin{array}{\|c} \underset{\sim}{N} \\ \dot{\infty} \\ \underset{\sim}{N} \\ \underset{\sim}{N} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \underset{m}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{n} \\ & \infty \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{N}{N} \\ & \text { N } \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \\ & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{~}{\sim} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \stackrel{1}{N} \\ & \underset{\sim}{1} \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \underset{\sim}{n} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\underset{N}{N}}{\sim} \\ & \dot{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{n} \\ & \stackrel{1}{\sim} \\ & \underset{\sim}{N} \\ & \stackrel{\sim}{n} \\ & \underset{\sim}{n} \end{aligned}$
$\begin{aligned} & \text { K } \\ & \text { 曷 } \end{aligned}$	4	凹	«	师	«	［1	«	［1］	«	［1		«	\checkmark	«	\cup	4	\cup	4	\checkmark	\＆	\checkmark		4	※	¢	岃	4	出	«	出	\＆	出

Table 5 continues on next page．

STT Doubles with Large $\mathbf{\Delta M}$－Part VI：Cygnus Multiples
Table 5 （continued）．Photometry and astrometry results for the selected STT objects．

$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \text { a } \end{aligned}$	\curvearrowleft		\bullet		$\stackrel{ }{ }$		∞		の			\curvearrowleft		ω		$\stackrel{\sim}{\sim}$		$\stackrel{\wedge}{\sim}$		$\stackrel{\infty}{\sim}$		$\begin{aligned} & \text { n } \\ & \text { N } \\ & \stackrel{0}{z} \end{aligned}$	へั	$\stackrel{\circ}{\text { ¢ }}$	$\stackrel{-}{m}$		$\stackrel{\sim}{m}$	
z	\curvearrowleft		n		\backsim		\bigcirc		$\stackrel{\sim}{\sim}$		z	\backsim		\curvearrowleft		\curvearrowleft		\curvearrowleft		$\stackrel{\circ}{\text { ® }}$		z	\sim	๑		\curvearrowleft	$\stackrel{\sim}{\square}$	
$\begin{aligned} & \stackrel{\text { ๗ }}{\substack{0}} \end{aligned}$	$\underset{\text { J̃ }}{\substack{2}}$		$\underset{\sim}{\sim}$		$\stackrel{\circ}{\circ}$		$\stackrel{\ominus}{6}$		$\stackrel{\infty}{\stackrel{\infty}{6}}$			$\underset{\substack{\mathrm{O}}}{ }$		$\underset{\omega}{\tilde{\omega}}$		$\stackrel{\circ}{\circ}$		$\underset{\text { ö }}{\substack{0}}$		$\stackrel{\infty}{\stackrel{\infty}{6}}$			تુ	$\underset{\sim}{c}$			¢	
$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 5 \\ & 0 \end{aligned}$	$\begin{aligned} & \hat{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \stackrel{g}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$				$\begin{aligned} & 0 \\ & \text { O } \\ & \text { E } \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \end{aligned}$		$\stackrel{\ddots}{\circ}$		$\begin{aligned} & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \hline \end{aligned}$					$\stackrel{\rightharpoonup}{0}$	$\stackrel{\curvearrowleft}{\circ}$		$\stackrel{\infty}{\stackrel{\infty}{0}}$		
$\underset{\Omega}{\approx}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{2}{m} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \underset{\infty}{n} \\ & \infty \\ & 0 \end{aligned}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\underset{\sim}{N}} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & o \\ & \text { ñ } \\ & \dot{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \tilde{m} \\ & \underset{y}{2} \end{aligned}$	$\begin{gathered} \stackrel{n}{0} \\ \dot{\alpha} \\ \dot{\infty} \\ \sim \end{gathered}$	$\begin{aligned} & \bullet \\ & \stackrel{1}{2} \\ & \dot{\sim} \end{aligned}$			$\underset{\Omega}{\sim}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{2} \\ & \stackrel{\sim}{m} \\ & \hline \end{aligned}$	$\begin{gathered} 0 \\ \dot{+} \\ \dot{\sim} \end{gathered}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & \hline \theta_{\gamma} \end{aligned}$	$\begin{aligned} & \underset{\sim}{n} \\ & \stackrel{\rightharpoonup}{n} \end{aligned}$	$\begin{aligned} & \stackrel{0}{n} \\ & \dot{\sim} \\ & \dot{m} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\tilde{\prime}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \sim \\ \stackrel{n}{0} \\ \dot{\infty} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & m \\ & \vdots \\ & \vdots \\ & \vdots \end{aligned}$			$\underset{\kappa}{\sim}$	（1）	$\begin{gathered} i n \\ \infty \\ 0 \\ 0 \\ \underset{\sim}{2} \\ \hline \end{gathered}$				
$\left\lvert\, \begin{array}{cc} 4 \\ \hline \end{array}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & N \\ & \stackrel{N}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{g} \\ & 0 . \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{0} \\ & \dot{0} \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ 0 \\ \dot{0} \end{gathered}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \pi \\ & \stackrel{\pi}{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \dot{\circ} \\ & \dot{O} \end{aligned}$	$\left\|\begin{array}{cc} 4 & 0 \\ \hline \boldsymbol{y} & 0 \\ \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \dot{0} \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { 응 } \\ & \stackrel{0}{\dot{0}} \end{aligned}$	$\begin{aligned} & \text { ng } \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \stackrel{\text { I }}{0} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\circ} \end{gathered}$	$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & \dot{o} \end{aligned}$	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \vdots \\ \vdots \end{gathered}$	$\begin{aligned} & \text { tr } \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{-}{\circ} \end{aligned}$	$\left\|\begin{array}{cc} 4 & 0 \\ \mu \\ \\ \end{array}\right\|$	$\left[\right.$	$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 & 1 \\ 0 \end{array}$	$\begin{gathered} 0 \\ \stackrel{n}{7} \\ \stackrel{0}{0} \end{gathered}$	$$	$\begin{array}{ll} \infty & \\ 0 \\ 0 & 2 \\ 0 & 0 \\ 0 \end{array}$	$\stackrel{\bullet}{\sim}$
$\begin{aligned} & \text { on } \\ & \pi \\ & \hline \end{aligned}$		$\begin{aligned} & \text { M } \\ & \stackrel{y}{2} \\ & \dot{y} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{g} \\ & \underset{\sim}{r} \end{aligned}$	$$	$\underset{\underset{\sim}{\underset{\sim}{2}}}{\underset{\sim}{2}}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{n}} \\ & \dot{0} \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$		$\begin{aligned} & 0 \\ & \tilde{m} \\ & 0 \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{2}} \\ & \underset{\sim}{\dot{~}} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { on } \\ & \text { 先 } \end{aligned}$		$\begin{aligned} & \dot{\infty} \\ & \infty \\ & \dot{m} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\underset{\sim}{\underset{\sim}{2}} \underset{\sim}{\sim}}{\stackrel{2}{2}}$	$\begin{gathered} \underset{\sim}{x} \\ \infty \\ \underset{m}{\prime} \end{gathered}$	$\stackrel{\stackrel{\rightharpoonup}{\underset{\sim}{\sim}}}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \underset{n}{N} \\ & 0 \\ & \underset{\sim}{\top} \\ & \end{aligned}$	$\begin{gathered} \overleftarrow{~} \\ \vdots \\ \underset{\sim}{r} \end{gathered}$		$\stackrel{\stackrel{\infty}{\underset{\sim}{\sim}} \underset{\sim}{i}}{ }$	$\begin{aligned} & \infty \\ & \infty \\ & \\ & \underset{m}{1} \\ & \hline \end{aligned}$			$\begin{aligned} & \vec{O} \\ & \underset{\sim}{1} \\ & \stackrel{1}{2} \end{aligned}$			$\begin{aligned} & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{\infty} \\ & \stackrel{1}{2} \\ & \stackrel{1}{2} \\ & \hline \end{aligned}$	n
H	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \stackrel{0}{2} \\ & \stackrel{y}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \dot{\circ} \end{aligned}$		$\begin{aligned} & \text { n} \\ & \stackrel{\Omega}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{0}{0} \end{aligned}$		畄吕	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { N } \\ & \stackrel{N}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { m } \\ & \stackrel{\rightharpoonup}{+} \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$				臅吕	$\begin{aligned} & \text { ng } \\ & 0 \\ & 0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \dot{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	
舐	$\begin{gathered} \stackrel{\rightharpoonup}{n} \\ \underset{N}{+} \\ \stackrel{\rightharpoonup}{N} \end{gathered}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{N}{\lambda} \\ & \underset{N}{2} \end{aligned}$		$n$$\stackrel{\infty}{\infty}$$\underset{N}{N}$$\underset{N}{N}$				$\begin{gathered} \stackrel{i}{n} \\ \underset{\sim}{i} \\ \underset{\sim}{N} \end{gathered}$		㟧	$\begin{aligned} & \text { サु } \\ & 0 \\ & \dot{\circ} \\ & \sigma \end{aligned}$		$\begin{aligned} & \text { ब̈ } \\ & \stackrel{1}{+} \\ & \dot{\sigma} \end{aligned}$				$\begin{aligned} & \text { n} \\ & \stackrel{0}{n} \\ & \dot{\sigma} \end{aligned}$		$\begin{aligned} & \circ \\ & \stackrel{\circ}{n} \\ & \dot{\Pi} \end{aligned}$		ム	$\begin{aligned} & \stackrel{\circ}{8} \\ & \stackrel{+}{\infty} \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \stackrel{0}{\circ} \\ & \dot{\infty} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\stackrel{1}{0}} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\sim} \\ & \sim \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	
	$\begin{aligned} & \curvearrowleft \\ & \infty \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { サु } \\ & \text { O. } \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$\begin{aligned} & \text { đु } \\ & \stackrel{0}{\circ} \\ & \stackrel{-}{\circ} \end{aligned}$		$\left\|\begin{array}{cc} 4 & \stackrel{\circ}{0} \\ \vdots \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { サु } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \infty \\ & \underset{\sim}{7} \\ & \stackrel{-}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & \infty \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { Hु } \\ & 0 . \\ & \dot{0} \end{aligned}$		$\begin{gathered} \mu_{i} \\ \end{gathered}$	$\begin{aligned} & \text { n } \\ & \infty \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\dot{0}$		$\begin{aligned} & \circ \\ & \infty \\ & 0 \\ & \dot{0} \end{aligned}$	¢ $\stackrel{\rightharpoonup}{\circ}$ $\stackrel{0}{\circ}$ 0	\％
$\begin{aligned} & \stackrel{\circ}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\sim} \\ & \text { N } \end{aligned}$		$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \underset{\sim}{\mathcal{N}} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \underset{\sim}{\sim} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \infty \\ & \dot{\sim} \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$		\qquad		$\stackrel{\circ}{0}$	$\begin{aligned} & \stackrel{O}{1} \\ & \underset{\vdots}{i} \\ & i \end{aligned}$						$\begin{aligned} & \stackrel{i}{o} \\ & \stackrel{y}{n} \\ & \dot{i} \end{aligned}$		$\begin{aligned} & i n \\ & \stackrel{n}{7} \\ & \stackrel{i}{i} \\ & \hline \end{aligned}$		¢	∞ $\stackrel{\infty}{\sim}$ $\stackrel{\sim}{r}$ $\stackrel{\sim}{\sim}$	令		$\begin{aligned} & \dot{e} \\ & \underset{\sim}{2} \\ & \dot{r} \end{aligned}$		$\stackrel{1}{5}$
$\begin{aligned} & 0 \\ & 0 \\ & \text { ì } \end{aligned}$	$\stackrel{\circ}{\circ}$		$\begin{aligned} & \text { O. } \\ & \dot{0} \end{aligned}$		$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{n}{\mathrm{O}} \\ & \dot{\circ} \end{aligned}$		$\begin{aligned} & \text { } \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \\ & \text { ì } \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { オ } \\ & \text { O. } \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{\circ} \end{aligned}$		$\begin{aligned} & \text { ㅇ } \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \text { O } \\ & \text { í } \end{aligned}$	$\stackrel{\circ}{\circ}$	\bigcirc		$\begin{aligned} & \stackrel{n}{0} \\ & \dot{\circ} \end{aligned}$	H $\stackrel{3}{\circ}$ \bigcirc 0	－1
登	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{\circ} \end{aligned}$		$\stackrel{\infty}{\stackrel{\infty}{0}}$		$\begin{aligned} & \text { No } \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \\ & \dot{\circ} \end{aligned}$		㲎	$\begin{aligned} & \bullet \\ & \stackrel{0}{0} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \text { n } \\ & \stackrel{0}{0} \end{aligned}$		$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \end{aligned}$		$\begin{aligned} & \hat{o} \\ & \dot{0} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{0}{\circ} \\ & \dot{\circ} \end{aligned}$		出	$\stackrel{\square}{\circ}$	$\stackrel{\square}{\circ}$		$\stackrel{\Gamma}{\dot{0}}$	\square $\stackrel{\rightharpoonup}{0}$ 0 0	－
$\begin{aligned} & \text { O} \\ & \text { ロ } \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \dot{\infty} \\ & \underset{\sim}{m} \\ & \underset{\sim}{1} \\ & \underset{\gamma}{\prime} \end{aligned}$				$\begin{aligned} & \underset{\sim}{\sim} \\ & \stackrel{\sim}{m} \\ & \underset{\sim}{n} \\ & \underset{\sim}{\prime} \end{aligned}$			$\begin{aligned} & \dot{g} \\ & \dot{\sim} \\ & \dot{m} \\ & m \\ & \underset{子}{\prime} \\ & \underset{\gamma}{2} \end{aligned}$		$\begin{aligned} & \text { O } \\ & \text { ® } \end{aligned}$	$\begin{aligned} & m \\ & 0 \\ & \dot{b} \\ & \dot{m} \\ & m \\ & \underset{y}{2} \\ & \underset{\gamma}{2} \end{aligned}$					$\begin{aligned} & \mathfrak{y} \\ & \dot{\sim} \\ & \underset{y}{n} \\ & m \\ & \underset{y}{y} \end{aligned}$	$\begin{aligned} & \dot{y} \\ & 0 \\ & \dot{b} \\ & m \\ & m \\ & \underset{\gamma}{\prime} \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{o} \\ & \dot{\sim} \\ & \stackrel{\sim}{\sim} \\ & \underset{\sim}{1} \\ & \underset{\gamma}{2} \end{aligned}$		－	¢		c｜c			¢
岸	$\begin{aligned} & \underset{N}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{N} \\ & \underset{\sim}{\dot{~}} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \dot{\infty} \\ \sim \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{gathered}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\dot{~}} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$		$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{n} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \underset{\sim}{\dot{N}} \\ & \underset{\sim}{n} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \dot{\infty} \\ \sim \\ \underset{\sim}{N} \\ \underset{\sim}{n} \end{gathered}$		虫	$\begin{aligned} & \stackrel{\rightharpoonup}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \end{aligned}$			$\begin{aligned} & \text { N} \\ & 0 \\ & \text { on } \\ & \dot{N} \\ & \text { N } \\ & \text { N } \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\sim}{\infty} \\ & \underset{\sim}{N} \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{0} \\ & \dot{\sim} \\ & m \\ & \underset{\sim}{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{N} \\ \underset{\sim}{\infty} \\ \underset{\sim}{N} \\ \underset{\sim}{n} \\ \underset{\sim}{2} \end{gathered}$				发	crer		c｜c			\sim \sim \sim \sim m m \sim m $\underset{\sim}{c}$
$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \underset{\sim}{\prime} \\ & \text { 岗 } \end{aligned}$	4	H	«	H	«	H	«	H	«	H	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{1}{2} \\ & \text { 宏 } \end{aligned}$	4	万	«	ம	4	万	«	b	«	b		« \downarrow	«	\triangle	$\varangle \sqrt{4}$	d	$凶$

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

FOX 262			RA		Dec		dRA	dDec	Sep	$\begin{aligned} & \text { Err } \\ & \text { Sep } \end{aligned}$	PA	$\underset{\text { EAr }}{\text { Er }}$	Mag	$\begin{aligned} & \hline \text { Err } \\ & \text { Mag } \end{aligned}$	SNR	dVmag	Date	N	Notes
E	21	39	30.542	41	43	56.92	0.06	0.06	41.529	0.085	46.341	0.117	8.453	0.070	341.74	0.07	621	5	5
F	21	39	33.226	41	44	25.59							11.611	0.071	87.57				
E	21	39	30.542	41	435	56.67	0.05	0.04	41.708	0.064	46.062	0.088	8.459	0.050	318.26	0.05	632	5	6
F	21	39	33.225	41	44	25.61							11.621	0.051	89.24				
E	21	39	30.542	41	43	56.52	0.08	0.10	41.778	0.128	45.984	0.176	8.275	0.090	242.38	0.09	700	5	7
F	21	39	33.226	41	44	25.55							11.562	0.092	57.53				
E	21	39	30.539	41	435	56.68	0.07	0.05	41.739	0.086	46.084	0.118	8.459	0.080	184.05	0.08	639	5	8
F	21	39	33.225	41	44	25.63							11.590	0.084	43.54				
E	21	39	30.541	41	43	56.70	0.066	0.067	41.688	0.094	46.117	0.129	8.412	0.074			648	20	33
F	21	39	33.225		44	25.60							11.596	0.076					
STT 433	RA			Dec			dRA	dDec	Sep	$\begin{aligned} & \text { Err } \\ & \text { Se } \end{aligned}$	PA	$\begin{gathered} \mathrm{Errr}_{\mathrm{PA}} \end{gathered}$	Mag	$\begin{aligned} & \text { Err } \\ & \text { Mag } \end{aligned}$	SNR	dVmag	Date	N	Notes
A	21	17	55.096	34	53	49.05	0.03	0.03	15.342	0.042	219.488	0.158	6.239	0.051	126.84	0.05	621	5	5
B	21	17	54.303	34	53	37.21							10.818	0.051	125.30				
A	21	17	55.082	34	53	48.83	0.04	0.04	15.039	0.057	219.527	0.216	6.037	0.051	99.15	0.05	632	5	6
B	21	17	54.304	34	53	37.23							10.829	0.051	107.40				
A	21	17	55.102	34	53	48.83	0.06	0.05	15.220	0.078	220.170	0.294	4.684	0.070	657.46	0.07	639	5	7
B	21	17	54.304	34	53	37.20							10.803	0.072	58.41				
A	21	17	55.059	34	53	48.99	0.07	0.10	15.111	0.122	217.987	0.463	5.126	0.100	217.38	0.10	700	5	8
B	21	17	54.303	34	53	37.08							10.674	0.101	65.29				
A	21	17	55.085	34	53	48.93	0.052	0.061	15.177	0.081	219.295	0.304	5.522	0.071			648	20	34
B	21	17	54.303	34	53	37.18							10.781	0.072					
STT 433	RA			Dec			dRA	dDec	Sep	$\begin{aligned} & \text { Err } \\ & \text { Sep } \end{aligned}$	PA	$\underset{\text { PA }}{\mathrm{Err}}$	Mag	$\begin{aligned} & \text { Err } \\ & \text { Mag } \end{aligned}$	SNR	dVmag	Date	n	Notes
A	21	17	55.096	34	53	49.05	0.03	0.03	22.173	0.042	183.977	0.110	6.239	0.051	126.84	0.05	621	5	5
c	21	17	54.971	34	53	26.93							10.654	0.051	140.12				
A	21	17	55.082	34	53	48.83	0.04	0.04	21.922	0.057	183.539	0.148	6.037	0.051	99.15	0.05	632	5	6
c	21	17	54.972	34	53	26.95							10.665	0.051	120.34				
A	21	17	55.102	34	53	48.83	0.06	0.05	21.981	0.078	184.269	0.204	4.684	0.070	657.46	0.07	639	5	7
c	21	17	54.969	34	53	26.91							10.659	0.072	69.15				
A	21	17	55.059	34	53	48.99	0.07	0.10	22.225	0.122	182.729	0.315	5.126	0.100	217.38	0.10	700	5	8
c	21	17	54.973	34	53	26.79							10.440	0.101	96.94				
A	21	17	55.085	34	53	48.93	0.052	0.061	22.074	0.081	183.627	0.209	5.522	0.071			648	20	34
c	21	17	54.971	34	53	26.90							10.605	0.071					

Table 5 continues on next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

Table 5 concludes on next page.

STT Doubles with Large $\mathbf{\Delta M}$－Part VI：Cygnus Multiples
Table 5 （conclusion）．Photometry and astrometry results for the selected STT objects．

$\begin{aligned} & \text { y } \\ & \stackrel{y}{2} \\ & \hline \end{aligned}$	$\stackrel{-}{-}$	の	\backsim	\bullet	¢	の	$\begin{aligned} & \text { n } \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$	m		$\begin{aligned} & \text { y } \\ & \stackrel{1}{2} \\ & \stackrel{2}{2} \end{aligned}$	－	∞	\backsim	\bullet	$\stackrel{\sim}{m}$	の	$\begin{aligned} & \text { y } \\ & \stackrel{\rightharpoonup}{z} \end{aligned}$	\sim	∞	\backsim	\bullet	$\stackrel{\sim}{m}$	
z	u	\curvearrowleft	\backsim	$ぃ$	\curvearrowleft	$\stackrel{\sim}{N}$	z			z	\backsim	\backsim	\backsim	\backsim	\backsim	$\stackrel{\sim}{\sim}$	z	\backsim	\backsim	\backsim	\backsim	\backsim	$\stackrel{\sim}{\sim}$
$\begin{aligned} & \stackrel{\text { g }}{\text { n }} \end{aligned}$	$\stackrel{\square}{\square}$	\％／	$\stackrel{\sim}{6}$	®ั	®๊	${ }_{6}$	$\begin{aligned} & \stackrel{y}{0} \\ & \text { n } \end{aligned}$	$\stackrel{7}{6}$		$\begin{array}{\|l\|l} \stackrel{y}{0} \\ \text { n } \end{array}$	$\stackrel{\square}{\circ}$	\％	$\stackrel{2}{6}$	®ั	\％	${ }_{6}$	$\begin{aligned} & \stackrel{y}{0} \\ & \stackrel{\sim}{0} \end{aligned}$	$\stackrel{\circ}{\imath}$	O/	$\stackrel{\sim}{0}$	ㅇ్ర	\％	$\stackrel{7}{6}$
$\begin{aligned} & \text { og } \\ & \text { E } \\ & \text { a } \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\dot{\circ}}$	$\stackrel{\curvearrowleft}{0}$	$\begin{aligned} & \text { +゙ } \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \text { +゙ } \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\begin{aligned} & \text { og } \\ & \text { 告 } \\ & 0 \end{aligned}$			$\begin{array}{\|c\|} \hline 0 \\ 0 \\ 5 \\ 0 \end{array}$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\stackrel{\Perp}{\stackrel{\circ}{\circ}}$	$\begin{aligned} & \text { +゙ } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \text { İ } \\ & \dot{\circ} \\ & \hline \end{aligned}$		$\begin{aligned} & \text { od } \\ & \text { d } \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \vdots \\ & 0 \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\stackrel{\sim}{\circ}$	$\begin{aligned} & \text { ザ } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\sim}{\circ}$	
镸	$\left\lvert\, \begin{array}{cc} \infty & 0 \\ \\ \dot{\infty} \\ \infty \\ \infty \\ 0 & \dot{\infty} \\ \infty \end{array}\right.$						貇			奚				$\mathfrak{c \| c} \left\lvert\, \begin{array}{cc} \substack{0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \\ \hline} \\ \hline \end{array}\right.$			咸			$\left.\begin{gathered} \underset{\sim}{c} \\ \dot{\sim} \\ \hline \end{gathered} \right\rvert\,$		\|ro	
\|	0°			$\begin{array}{ll} 0 \\ 0 \\ 0 \\ 0 \end{array}$	$\begin{array}{rr} 0 \\ 0 & -7 \\ \vdots \\ \dot{0} \\ 0 \\ 0 \end{array}$		产菑	$\left\{\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$		品	On	$\left[\begin{array}{cc} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right.$	$\vdots \begin{array}{cc} \substack{n \\ n \\ \vdots \\ \vdots \\ 0 \\ 0 \\ 0 \\ 0} \end{array}$	\mathfrak{c}		$\mathfrak{0} \dot{0} \dot{0} \dot{0} \dot{0} \dot{0}$! 品	（1）	$\begin{array}{ccc} N & \begin{array}{c} n \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ 0 \end{array}$		（1）	$\left[\begin{array}{l} n \\ 0 \\ 0 \\ 0 \end{array}\right.$	
\％	$\stackrel{\rightharpoonup}{\overrightarrow{7}}$	少	$\begin{array}{cc} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}$	$: \begin{aligned} & \widehat{\infty} \\ & \cline { 1 - 1 } \end{aligned}$			$\stackrel{\text { ® }}{\text { \％}}$	$\underset{\substack{\underset{\sim}{c} \\ \underset{\sim}{2} \\ \hline}}{ }$		$\stackrel{1}{2}$:	Nic\|cos	\mathfrak{l}	\mathfrak{c}		:	¢	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\stackrel{\rightharpoonup}{\circ}$		No	$\begin{aligned} & \infty \\ & \infty \\ & 0 \\ & 0 \end{aligned}$	－
䓒㐍	$\begin{aligned} & \stackrel{n}{0} \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \underset{\sim}{7} \\ & \stackrel{y}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\leftrightarrows} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\stackrel{0}{0}} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{gathered} \tilde{m} \\ \stackrel{0}{0} \end{gathered}$	$\begin{gathered} \stackrel{m}{m} \\ \stackrel{0}{0} \end{gathered}$	䓒㐍			崽出	$\begin{aligned} & \stackrel{\pi}{\stackrel{1}{0}} \\ & \stackrel{0}{2} \end{aligned}$	$\stackrel{\stackrel{\Gamma}{r}}{\stackrel{\rightharpoonup}{0}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{+} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \underset{\sim}{m} \\ & \underset{0}{0} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{ }$	䓒㐍	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{3}{-} \end{aligned}$		$\begin{aligned} & \circ \\ & \underset{H}{\prime} \\ & \underset{-}{2} \end{aligned}$	$\stackrel{\rightharpoonup}{-}$	$\begin{aligned} & 7 \\ & \underset{\sim}{4} \end{aligned}$	$\stackrel{\square}{\square}$
出	$\begin{aligned} & \underset{\sim}{\underset{\sim}{c}} \\ & \underset{\sim}{c} \end{aligned}$	$\begin{gathered} \underset{N}{N} \\ \underset{\sim}{c} \end{gathered}$	$\begin{gathered} \stackrel{N}{\underset{\sim}{i}} \\ \stackrel{i}{\dot{N}} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{1}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	$\begin{aligned} & \stackrel{0}{c} \\ & \stackrel{\sim}{\sim} \end{aligned}$	菟			菟	$\begin{aligned} & \stackrel{\infty}{N} \\ & \stackrel{\sim}{n} \end{aligned}$		$\begin{aligned} & \underset{\sim}{n} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\sim}{\infty} \\ & \infty \\ & \stackrel{\sim}{\sim} \end{aligned}$	$\begin{gathered} \underset{\sim}{\underset{~}{c}} \\ \dot{\sim} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \infty \\ & \dot{g} \end{aligned}$	舐		$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & 0 \\ & \stackrel{\rightharpoonup}{ت} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \stackrel{-}{\sim} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{1}{i} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\tilde{\sim}}{\underset{\sim}{1}} \\ & \stackrel{\rightharpoonup}{\sim} \end{aligned}$	吕 $\stackrel{-}{\text { ¢ }}$
出易客	$\begin{gathered} \tilde{N} \\ \vdots \\ 0 \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\square}{\infty} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{7} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{7} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$				$\begin{array}{\|c\|c\|c\|c\|c\|c\|c\|c\|} \substack{0} \end{array}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\vdots} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{n}{\infty} \\ & \stackrel{0}{0} \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { no } \\ & 0 \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{0}{-} \\ & \vdots \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{0} \end{aligned}$	$\begin{array}{\|c\|c\|c} \substack{0 \\ 0 \\ 0 \\ \hline} \end{array}$	$$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{7} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \&/ } \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { \& } \\ & \stackrel{0}{0} \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{7} \\ & 0 \\ & \hline \end{aligned}$	$\stackrel{\sim}{0}$
\％	$\begin{aligned} & \underset{\sim}{\underset{ }{\circ}} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \text { O} \\ & \underset{\sim}{\infty} \\ & \sim \end{aligned}$		$\begin{aligned} & \stackrel{\sim}{7} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\underset{\sim}{2}} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \underset{\sim}{~} \\ & \stackrel{\rightharpoonup}{\infty} \\ & \underset{\sim}{0} \end{aligned}$	\％			\％		$\begin{aligned} & \stackrel{r}{c} \\ & \dot{\sim} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{0} \\ & \dot{j} \\ & \dot{y} \end{aligned}$	$\begin{aligned} & \stackrel{0}{4} \\ & \stackrel{6}{6} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \dot{\sim} \end{aligned}$	$\begin{gathered} \stackrel{\sim}{m} \\ \stackrel{\sim}{g} \\ \hline \end{gathered}$	\％	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{1}{\circ} \end{aligned}$	$\underset{\sim}{N}$	$\begin{aligned} & \text { ザ } \\ & \text { ণí } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & 00 \\ & \stackrel{0}{m} \\ & \underset{\sim}{2} \end{aligned}$	\circ $\stackrel{\circ}{0}$ \square \square
$\begin{aligned} & \text { 00 } \\ & \text { 号 } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \hat{0}+0 \\ & \dot{0} \end{aligned}$	$\begin{aligned} & 0.0 \\ & \text { ö } \end{aligned}$	$\dot{0}$		$\begin{array}{\|l} \hline 0 \\ \text { ö } \end{array}$	$\begin{aligned} & O \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \tilde{N} \\ & \stackrel{0}{0} \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \text { ö } \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{0}{\circ} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}}$	\bigcirc
孚	$\stackrel{\rightharpoonup}{\circ}$	$\begin{aligned} & 0 \\ & \stackrel{0}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\circ}{\dot{\circ}}$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\begin{aligned} & \stackrel{0}{0} \\ & \vdots \end{aligned}$	敩	$\frac{5}{6}$		敩	$\begin{aligned} & \stackrel{\Gamma}{\circ} \\ & \vdots \\ & \dot{0} \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\circ} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \vdots \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{~}{\dot{0}} \\ \hline \end{array}$	$\begin{aligned} & \infty \\ & \vdots \\ & \dot{0} \\ & \hline \end{aligned}$	$\begin{aligned} & n \\ & \stackrel{n}{0} \\ & \dot{0} \end{aligned}$	敩	$\begin{aligned} & \stackrel{\rightharpoonup}{0} \\ & \dot{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \hline \end{aligned}$	
\％							ه́		，	®							®						
${ }_{4}^{4}$		$\left\lvert\, \begin{gathered} 0 \\ \dot{8} \\ 8 \\ \vdots \\ \dot{N} \end{gathered}\right.$					出	$\left\|\begin{array}{l} 0 \\ 0 \\ \dot{0} \\ \dot{0} \\ 0 \\ 0 \\ \underset{\sim}{1} \end{array}\right\|$		出							\＆		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ A \end{array}\right\|$				
¢	$\& \cup$	\＆ 0	40	\＆ 0	\＆ 0		$\begin{aligned} & \text { ì } \\ & \underset{\sim}{n} \\ & \text { 㽞 } \end{aligned}$	¢		第	\＆$\underbrace{}_{1}$			$\underbrace{}_{4}$｜r		，		－	－	－	○○	0	

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

Notes to Table 5.

1. iT24 stack 5×3 s. SNR $B<20$.
2. i24 stack 5×3 s_2. SNR $B<20$.
3. iT18 stack 5×3 s. SNR $B<20$.
4. A too bright for reliable photometry. SNR B <20.
5. iT24 stack $5 \times 3 \mathrm{~s}$.
6. iT24 stack $5 \times 3 \mathrm{~s}$ _2.
7. iT21 stack $5 \times 3 \mathrm{~s}$.
8. iT18 stack $5 \times 3 \mathrm{~s}$.
9. A too bright for reliable photometry.
10. iT18 stack 5×3 s. SNR D <20.
11. iT24 stack 5×3 s. A and B too bright for reliable photometry.
12. iT24 stack 5×3 s_2. A and B too bright for reliable photometry.
13. iT21 stack 5×3 s. A and B too bright fro reliable photometry.
14. iT18 stack $5 \times 3 \mathrm{~s}$. A and B too bright fro reliable photometry.
15. A and B too bright for reliable photometry.
16. iT24 stack 5×3 s. SNR $G<20$.
17. IT24 stack 5x3s_2. SNR G <20.
18. iT21 stack 5×3 s. SNR $G<10$.
19. iT18 stack 5×3 s. SNR $G<20$.
20. A too bright for reliable photometry. SNR G <20.
21. iT24 stack $5 \times 3 \mathrm{~s}$. Elongation indicates this being a double itself.
22. iT24 stack 5×3 s_2. No elongation.
23. iT21 stack 5×3 s. SNR $\mathrm{H}<20$.
24. iT18 stack 5×3 s. SNR $\mathrm{H}<20$.
25. A too bright for reliable photometry. SNR $\mathrm{H}<20$. Indication of H being a double itself only in one image, thus not confirmed.
26. iT21 stack 5×3 s. SNR $\mathrm{J}<20$.
27. iT18 stack $5 \times 3 \mathrm{~s}$. SNR $\mathrm{J}<20$.
28. A too bright for reliable photometry. SNR $\mathrm{J}<20$.
29. iT24 stack 5×3 s. SNR K <5.
30. it24 stack 5×3 s_2. SNR $K<10$.
31. iT18 stack 5×3 s. SNR $K<5$.
32. A too bright for reliable photometry. SNR $\mathrm{K}<5$.
33. E too bright for reliable photometry.
34. A too bright for reliable photoemetry and photometry 1)
35. iT18 stack 5×3 s. SNR E <20.
36. iT21 stack 5×3 s. SNR E <20.
37. iT24 stack 5×3 s_3
38. 38. Components too close, no resolution. A too bright for reliable photometry.
1) The very bright primary of STT433 poses in our setup besides the usual photometry issue with bright stars also an astrometry challenge as the star disk gets huge and the large central area is populated with ADU values per pixel near the saturation limit seasoned with random effects up and down making the centroid calculation quite difficult. This leads to the curious effect that 2 image stacks of very good quality with a rather small average plate solving error from the same telescope deliver a position for A different by ~ 0.3 " but at the same time a nearly identical position for the other components. Another side effect of the bright STT433 primary are heavy sparks also disturbing measurements of components

The difficulty of getting precise positions for very bright stars is also demonstrated by the results in the AAVSO Bright Star Monitor (BSM) Epoch Photometry Database (EPD) v3.0 (released October 22, 2015) with an average scatter of ~ 0.3 " around the current URAT1 position of STT433A. That astrometry for bright stars is somewhat difficult is also demonstrated by the fact that special efforts were taken in the URAT1 survey to access stars as bright as 3rd magnitude by taking short exposures with an objective grating (Zacharias 2015)

Figure 3. STT433 ADU Readings iT24 showing the scatter in the center of the star disk

STT Doubles with Large ΔM - Part VI: Cygnus Multiples

Table 6.: Photometry and Visual Results Compared to WDS

	$\begin{aligned} & \text { WDS } \\ & \text { Mag } \end{aligned}$	NOMAD-1 VMag	$\begin{gathered} \text { UCAC4 } \\ \text { VMa } \end{gathered}$	UCAC4 f. mag	Average of Photometry Measures	Results of Visual Observations
BU 449 B	12.70	-	-	-	12.625	Not seen.
STT 447 C	12.20	-	-	11.231	11.183	Three observations pointing to C being a magnitude brighter than the WDS value.
BU 449 D	13.00	-	-	12.696	13.121	Glimpsed with averted vision, hinting D may be slightly brighter than the WDS value.
STT 447 E	8.48	8.373	9.015	8.782	8.412	No observations recorded.
ABH 148 G	14.80	14.20	-	14.192	14.618	No observations recorded.
ABH 148 H	13.79	13.670	-	13.442	13.864	Not seen.
ABH 148 I	11.65	11.595	12.063	12.034	12.044	One observation indicating the magnitude of I is close to the WDS value based on comparison star.
ABH 148 J	13.88	13.570	13.840	13.693	13.988	Not seen.
ABH 148 K	11.65	-	-	14.614	15.593	Not seen.
FOX 262 F	11.56	11.120	11.559	11.285	11.596	One observation which concluded K may cause F to appear brighter than it is.
STT 433 B	10.00	-	-	-	10.781	One observation indicating B was close to the WDS value, two observations suggesting B is half a magnitude fainter.
STT 433 C	9.95	10.847	9.952	-	10.605	One observation concluded C is reasonably close to the WDS value, one suggested it's half a magnitude fainter.
SLE 382 D	12.00	12.950	-	12.937	13.098	One observation that concluded D is close to $13^{\text {th }}$ magnitude based on difficulty.
BU 9011 E	10.00	-	-	13.379	13.712	One observation which concluded E is $13^{\text {th }}$ magnitude or fainter because it wasn't visible.
BU 1210 B	12.20	-	-	-	-	Not seen.
STT 425 C	10.80	-	10.801	10.577	10.862	Two observations suggesting the WDS magnitude was about right, one suggesting C is half a magnitude brighter than WDS mag.
STT 425 E	10.61	10.515	10.516	10.113	10.847	One observation which concluded E is the same magnitude as C.
STT 425 D	10.90	-	-	12.206	12.274	One observation which found D is about half a magnitude fainter than C.

STT Doubles with Large $\Delta \mathbf{M}$ - Part VI: Cygnus Multiples

Table 7. Astrometry Results Compared to WDS

	WDS Coordinates	WDS Sep	WDS PA	Astrometry Coordinates	Astrometry Sep	Astrometry PA
BU 449 AB	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	6.2	14	$\begin{array}{ccc} 21 & 39 & 28.726 \\ +41 & 43 & 36.04 \end{array}$	6.030	13.894
STT 447 AC	$\begin{aligned} & 21: 39: 28.710 \\ & +41: 43: 36.00 \end{aligned}$	13.7	176	$\begin{array}{rll} 2139 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	14.055	176.438
BU 449 AD	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	18.7	248	$\begin{array}{ccc} 21 & 39 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	18.949	247.945
STT 447 AE	$\begin{aligned} & 21: 39: 28.710 \\ & +41: 43: 36.00 \end{aligned}$	28.6	45	$\begin{array}{ccc} 21 & 39 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	29.011	44.450
ABH 148 AG	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	33.8	337	$\begin{array}{ccc} 21 & 39 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	33.757	336.523
ABH 148 AH	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	74.2	263	$\begin{array}{ccc} 21 & 39 & 28.727 \\ +41 & 43 & 36.00 \end{array}$	74.403	262.563
ABH 148 AI	$\begin{aligned} & 21: 39: 28.710 \\ & +41: 43: 36.00 \end{aligned}$	92.7	271	$\begin{array}{rll} 2139 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	92.895	271.257
ABH 148 AJ	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	71.3	94	$\begin{array}{rrr} 21 & 39 & 28.727 \\ +41 & 43 & 35.99 \end{array}$	71.151	94.506
ABH 148 AK	$\begin{array}{r} 21: 39: 28.710 \\ +41: 43: 36.00 \end{array}$	75.0	49	$\begin{array}{ccc} 21 & 39 & 28.726 \\ +41 & 43 & 36.04 \end{array}$	74.737	48.595
FOX 262 EF	$\begin{array}{r} 21: 39: 30.520 \\ +41: 43: 56.50 \end{array}$	42.0	46	$\begin{array}{llr} 21 & 39 & 30.541 \\ +41 & 43 & 56.70 \end{array}$	41.688	46.117
STT 433 AB	$\begin{aligned} & 21: 17: 55.070 \\ & +34: 53: 48.80 \end{aligned}$	14.2	222	$\begin{array}{lrr} 21 & 17 & 55.085 \\ +34 & 53 & 48.93 \end{array}$	15.177 1)	219.295 1)
STT 433 AC	$\begin{array}{r} 21: 17: 55.070 \\ +34: 53: 48.80 \end{array}$	21.2	181	$\begin{array}{cccc} 21 & 17 & 55.085 \\ +34 & 53 & 48.93 \end{array}$	22.074 1)	183.627 1)
SLE 382 AD	$\begin{array}{r} 21: 17: 55.070 \\ +34: 53: 48.80 \end{array}$	57.0	308	$\begin{array}{cccc} 21 & 17 & 55.085 \\ +34 & 53 & 48.93 \end{array}$	57.095 1)	307.094 1)
BU 9011 AE	$\begin{array}{r} 21: 17: 55.070 \\ +34: 53: 48.80 \end{array}$	34.2	67	$\begin{array}{cccc} 21 & 17 & 55.085 \\ +34 & 53 & 48.93 \end{array}$	34.410 1)	67.420 1)
BU 1210 AB	$\begin{array}{r} 21: 00: 06.610 \\ +48: 40: 45.90 \end{array}$	1.4	104	$\begin{array}{ccc} 21 & 00 & 06.630 \\ +48 & 40 & 46.05 \end{array}$	-	-
STT 433 BC	$\begin{array}{r} 21: 17: 54.290 \\ +34: 53: 37.10 \end{array}$	10.1	141	$\begin{array}{ccc} 21 & 17 & 54.303 \\ +34 & 53 & 37.18 \end{array}$	13.152	141.394
STT 425 AC	$\begin{array}{r} 21: 00: 06.610 \\ +48: 40: 45.90 \end{array}$	17.9	27	$\begin{array}{ccc} 21 & 00 & 06.630 \\ +48 & 40 & 46.05 \end{array}$	18.154	27.163
STT 425 AE	$\begin{aligned} & 21: 00: 06.610 \\ & +48: 40: 45.90 \end{aligned}$	44.9	16	$\begin{array}{ccc} 21 & 00 & 06.630 \\ +48 & 40 & 46.05 \end{array}$	45.356	15.804
STT 425 CD	$\begin{array}{r} 21: 00: 07.410 \\ +48: 41: 01.71 \end{array}$	4.5	132	$\begin{array}{ccc} 21 & 00 & 07.467 \\ +48 & 41 & 02.19 \end{array}$	4.300	131.055

1) These results have to be taken with caution due to the astrometry issue with the bright primary. For explanation see Note 1 below Table 5.

STT Doubles with Large ΔM - Part VI: Cygnus Multiples

Table 8. Astrometry Results Compared with URAT1 Coordinates

Object	URAT1 Sep	iTelescope Sep	Err Sep	Within Error Range?	URAT1 PA	iTelescope PA	Err PA	Within Error Range?
STT 447 AC	14.047	14.055	0.094	Yes	176.401	176.438	0.382	Yes
BU 449 AD	18.907	18.949	0.094	Yes	247.878	247.945	0.283	Yes
STT 447 AE	28.976	29.011	0.094	Yes	44.490	44.450	0.185	Yes
ABH 148 AG	33.731	33.757	0.094	Yes	336.598	336.523	0.159	Yes
ABH 148 AH	74.371	74.403	0.094	Yes	262.562	262.563	0.072	Yes
ABH 148 AI	92.849	92.895	0.094	Yes	271.252	271.257	0.058	Yes
ABH 148 AJ	71.190	71.151	0.094	Yes	94.496	94.506	0.075	Yes
ABH 148 AK	74.661	74.737	0.079	Yes	48.571	48.595	0.061	Yes
FOX 262 EF	41.751	41.688	0.094	Yes	46.120	46.117	0.129	Yes
STT 433 AB	15.090	15.177	0.081	No 1)	222.080	219.295	0.304	No 1)
STT 433 AC	21.864	22.074	0.081	No 1)	183.970	183.627	0.209	No 1)
SLE 382 AD	57.273	57.095	0.081	No 1)	307.235	307.094	0.081	No 1)
BU 9011 AE	34.444	34.410	0.081	Yes	67.107	67.420	0.134	No 1)
STT 433 BC	13.140	13.152	0.081	Yes	141.373	141.394	0.351	Yes
STT 425 AC	18.069	18.154	0.102	Yes	26.884	27.163	0.323	Yes
STT 425 AE	45.382	45.356	0.102	Yes	15.704	15.804	0.129	Yes
STT 425 CD	4.318	4.300	0.102	Yes	131.433	131.055	1.363	Yes

1) "No" with only minor delta to calculated error estimation for Sep and the respective PA with the exception of PA for STT 433 AB - here we have a measurement error of $\sim 3^{\circ}$ far beyond any calculated error estimation. This is the consequence of a STT433A plate solving error of as little as 0.008 RA seconds while STT433B is plate solved with virtually no difference compared to URAT1. For explanation see Note 1 below Table 2.3.1. It should also be noted that there is a difference of 0.240 " for the position of STT433A between UCAC4 and URAT1 and 0.291 " between WDS catalog data and URAT1 most probably due to proper motion. According to URAT1 the 2013.711 J2000 position is 21:17:55.093 $+34: 53: 48.73$

STT Doubles with Large $\mathbf{\Delta M}$ - Part VI: Cygnus Multiples

(Continued from page 523)

- iT24: 610mm CDK with 3962 mm focal length. CCD: FLI-PL09000. Resolution $0.62 \mathrm{arcsec} / \mathrm{pixel}$. V-filter. Located in Auberry, California. Elevation 1405 m
- iT11: 510 mm CDK with 2280 mm focal length. CCD: FLI ProLine PL11002M. Resolution 0.81 arcsec/pixel. B- and VFilter. Located in Mayhill, New Mexico. Elevation 2225 m
- iT18: 318mm CDK with 2541 mm focal length. CCD: SBIG-STXL-6303E. Resolution 0.73 arcsec/pixel. V-filter. Located in Nerpio, Spain. Elevation 1650m
- iT21: 431 mm CDK with 1940 mm focal length. CCD: FLI-PL6303E. Resolution 0.96 arcsec/pixel. V-filter. Located in Mayhill, New Mexico. Elevation 2225m
- AAVSO VPhot for initial plate solving
- AAVSO APASS providing Vmags for faint reference stars (indirect via UCAC4)
- UCAC4 catalog (online via the University of Heidelberg website and Vizier and locally from USNO DVD) for counterchecks
- URAT1 catalog for high precision plate solving
- Aladin Sky Atlas v8.0 for counterchecks
- SIMBAD, VizieR for counterchecks
- 2MASS All Sky Catalog for counterchecks
- URAT1 Survey (preliminary) for counterchecks
- AstroPlanner v2.2 for object selection, session planning and for catalog based counterchecks
- MaxIm DL6 v6.08 for plate solving on base of the UCAC4 catalog
- Astrometrica v4.9.1.420 for astrometry and photometry measurements

References

Buchheim, Robert, 2008, "CCD Double-Star Measurements at Altimira Observatory in 2007", Journal of Double Star Observations, 4, 27-31.

Burnham, S.W., 1874, "A Fifth Catalogue of 71 New Double Stars", Monthly Notices of the Royal Astronomical Society, 35, 31-48. (ADS bibliographic codes 1874MNRAS..35...31B and 1874MNRAS..35...40).
Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole, Part II, University of Chicago Press, Chicago.

Cullen, R.T., 1937, Observations Made at the Royal Observatory, Greenwich, in the Year 1935, London, (ADS bibliographic code 1937GOAM...11B...1J).

Fox, Philip, 1915, A nnals of The Dearborn Observatory of Northwestern University, Vol 1, p. 199.
Greaney, Michael, 2012, "Some Useful Formulae" in R.W. Argyle, Observing and Measuring Visual Double Stars, 2nd Edition, Springer, New York.

Herschel, William, 1785, Catalogue of Double Stars, Philosophical Transactions, Vol. 75, pp. 40-127.

Hussey, W.J., 1901, Micrometrical Observations of the Double Stars Discovered at Pulkowa Made with the Thirty-Six-Inch and Twelve-Inch Refractors of Lick Observatory, pp. 14-16, A.J. Johnston, Sacramento.

Knapp, Wilfried; Nanson, John; Smith, Steven, 2015, "STT Doubles with Large Delta_M - Part I: Gem and Part II Leo and UMa", Journal of Double Star Observations, 11, 184-195.

Knapp, Wilfried; Nanson, John; Smith, Steven, "2016, STT Doubles with Large Delta_M - Part II: Leo and UMa", Journal of Double Star Observations, 12, 111-127.

Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large Delta_M - Part III: Vir, Ser, CrB, Com and Boo", Journal of Double Star Observations, 12, 128-142.
Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large Delta_M - Part IV: Oph and Her", Journal of Double Star Observations, 12, 361-373.

Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large Delta_M - Part V: Aql, Del, Cyg and Aqr, Journal of Double Star Observing", 12, 474487.

Zacharias, Norbert, 2015, "Bright Star Astrometry with URAT", proceedings of invited talk at 2014 ADeLA meeting in Santiago, Chile, accepted by Revista Mexicana de Astronomia y Astrofisica.

