Page 474

STT Doubles with Large ΔM – Part V: Aquila, Delphinus, Cygnus, Aquarius

Wilfried R.A. Knapp

Vienna, Austria wilfried.knapp@gmail.com

John Nanson Star Splitters Double Star Blog Manzanita, Oregon jnanson@nehalemtel.net

Abstract: The results of visual double star observing sessions suggested a pattern for STT doubles with large ΔM of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. We found that, as in the other constellations covered so far (Gem, Leo, UMa etc.), at least several of the selected objects in Aql, Del, Cyg and Aqr show parameters quite different from the current WDS data

1. Introduction

As a follow up to our STT reports so far, we continued in the constellations of Aquila, Delphinus, Cygnus, and Aquarius, which contained (with the exception of 3 multiples in Cyg covered in a separate report) 14 objects from our list (see Table 1). All values are based on WDS data as of the begin of 2016.

2. Further Research

Following the procedure for the earlier parts of our report we concluded again that the best approach would be to check historical data on all objects, observe them visually with the target of comparing with the existing data and obtain as many images as possible suitable for photometry.

2.1 Historical Research and Catalog Comparisons

Of the eleven stars in this survey, three of them have notable aspects worth further investigation. Three

Name		ID	RA	Dec	Con	Sep	PA	M1	M2	ΔΜ
STT362	AC	18482+1039	18:48:13.819	+10:38:33.899	Aql	12	104	8.27	14.00	5.73
STT532	AB	19553+0624	19:55:18.791	+06:24:24.301	Aql	13.6	359	3.81	11.90	8.09
STT381	AB	19434+0410	19:43:21.089	+04:10:27.900	Aql	14.7	2	8.00	11.20	3.20
STT368	AC	19160+1610	19:16:01.839	+16:09:39.501	Aql	15.8	108	7.53	11.30	3.77
STT438	AB	21218+4309	21:21:45.801	+43:08:38.102	Cyg	2.3	357	8.27	10.30	2.03
STT427	AB	21037+3104	21:03:39.871	+31:03:44.698	Cyg	4.2	151	7.83	11.90	4.07
STT420	AB	20544+4042	20:54:22.253	+40:42:10.605	Cyg	5.4	0	6.70	10.70	4.00
STT374	AB	19310+5012	19:31:02.423	+50:11:48.701	Cyg	19.4	291	7.60	11.10	3.50
STT412	AB	20457+5040	20:45:43.080	+50:40:25.905	Cyg	25.9	279	7.10	13.10	6.00
STT412	BC	20457+5040	20:45:40.402	+50:40:30.093	Cyg	5.00	186	13.10	13.10	0.00
STT412	AC	20457+5040	20:45:43.080	+50:40:25.905	Cyg	26.20	268	7.27	11.22	3.95
STT409	AB	20403+0326	20:40:17.638	+03:26:28.500	Del	16.8	84	7.06	10.20	3.14
STT460	AB	22057+0147	22:05:39.203	+01:46:56.300	Aqr	13.8	340	8.40	12.80	4.40
STT460	AC	22057+0147	22:05:39.203	+01:46:56.300	Aqr	18.8	30	8.40	12.10	3.70

Table 1. WDS Values for the Selected Objects at the Beginning of 2016

main research sources were used for this section of the paper, the first of which was W.J. Hussey's Micrometrical Observations of the Double Stars Discovered at Pulkovo, published in 1901, which provided preliminary historical information on each of the stars. Hussey's book includes his observations and measures of all the stars originally listed in Otto Wilhelm Struve's 1845 Pulkovo Catalog, as well as data beginning with the date of first measure and continuing through the following years up to 1900. That data, plus inclusion of the background for the Pulkovo Catalog, makes Hussey's book a valuable source of reference. Also consulted was S.W. Burnham's A General Catalogue of Double Stars Within 121° of the North Pole, Part I and Part II, for information on STT 381 and STT 460. In addition, Bill Hartkopf of the USNO graciously provided the text file for STT 460.

STT 381 (Aql) The intriguing aspect of STT 381 is Hussey's statement that that pair was dropped from the second edition of the Pulkovo catalog because "the companion was regarded as too faint for exact measurement with the 15-inch Pulkowa telescope." According to Hussey's account of STT 381, the pair was first measured by Johann Heinrich Mädler in 1847 at 8° and 15.74", but no magnitudes are shown. However Burnham, in Part I of his 1906 Catalog, lists an 1843 measure by Mädler of 7.5° and 15.79" with magnitudes of 7 and 11 (see Figure 2). Burnham also notes the exclusion of STT 381 from the second Pulkovo catalog, and includes a remark that the secondary wasn't seen by Dembowski in 1865, but notes he (Burnham) found it easy in 1876 with his six inch refractor. Hussey shows magnitudes of 8.0 and 12.0 for the pair in 1899, and Burnham lists them at 7.2 and 11.7 in 1900 (See Figure 2). The WDS shows a more narrow range of 8.0 and 11.20 for the pair. Our photometry resulted in a magnitude of 12.396 for B, but our result for A of 7.775 was hampered by the brightness of A relative to B. We can add that visual observations of B were difficult with a six inch refractor and a 9.25 inch SCT.

STT 409 (Del) This pair was first measured in 1843 by Mädler at 83.6° and 16.33". Hussey notes

Otto Struve dropped STT 409 from the second edition of the Pulkovo catalog because the separation exceeded the 16" separation limit set for pairs with secondaries fainter than ninth magnitude. That limit was set by F.G.W. Struve, who began the survey in 1841 and a month later turned it over to his son, Otto (Hussey, 1901, p. 16). There's a tenth magnitude C companion which was added in 1894 by S. Glasenapp.

STT 460 (Aqr) The component of STT 460 which is now designated as C in the WDS was first measured in 1845 by Mädler at 53.9° and 15". The second component, now designated as B in the WDS, was added in 1849 by Otto Struve, with measures of 355.7° and 5.68". However, when the 1850 revision of the Pulkovo Catalog was published, it listed the two components of STT 460 at distances of 1.5" and 7.3". That set off a search by S.W. Burnham (Burnham, 1875) with his six inch refractor which failed to turn up a component at that distance. Hussey also searched for it with the 36 inch Lick refractor on two night in 1898 (Hussey, 1901, p. 182) and was unable to detect a component in the 1.5" range. It appears the 1.5" distance published in the 1850 catalog was very likely a misprint of 15".

The relative positions of the three components have changed rapidly since their discoveries in 1845 and 1849. The AB pair's initial measures (355.7° and 5.68") are virtually unrecognizable when compared to the current WDS measures (2003) of 340° and 13.80"; our measures for the pair are 339.8° and 14.47". The AC pair, first measured at 53.9° and 15", is listed in the WDS at 30° and 18.80" (also from 2003); our measures are 29.5° and 19.33". The WDS text file data for AB and AC displayed in Figure 2.2 highlights the consistent increases in the separations of both pairs, along with steady changes in their position angles.

The proper motion overlay in Figure 3 clearly illustrates the disparate motion of each of the three stars which has resulted in the increasing separation of the components of STT 460. Apart from the B component, the proper motions are not especially high, but as the image shows, each of the three stars is moving away (*Continued on page 476*)

9540. O Σ 381 rej. Rejected in second edition of the 37 23 Poulkowa Catalogue. Companion not visible to \varDelta in 1865; easy with 6-inch in 1876. No change shown by the later measures,

 I899.50
 5°9
 I5'47
 3n
 Hu
 8.0...12.0

 I900.51
 6.0
 I5.13
 3n
 β
 7.2...11.7

 [Ma (XI, XIII)... d (I, p. 229)...Hu (Pub. L. O. ∇)...β⁵...]

Figure 2. From Burnham's 1906 Catalog of Double Stars, Part II, p. 855.

STT	460 AB						A	5	STT 460	AC	
	PA	Sep	0							PA	Sep
1849.69	355.7	5.68						1845	.67	53.9	15.00
1877.80	351.8	6.71	10 m					1849	.69	48.3	15.81
1886.82	351.7	8.05						1866	.53	46.7	15.77
1898.60	348.0	8.33	0					1877	.80	46.3	16.04
1898.67	349.0	8.18						1886	.82	43.6	16.51
1907.74	348.8	8.93						1898	.60	42.4	16.73
1907.74	347.5	8.60						1898	.67	44.3	17.02
1907.79	347.5	8.81						1907	.79	41.1	17.06
1908.56	347.6	8.83		0				1907	.79	41.0	16.84
1908.56	344.8	9.16	6		~	B		1908	.48	40.7	16.69
1909.65	346.5	8.29			\bigcirc			1908	.56	40.7	16.74
1909.74	348.6	8.00			\sim			1908	.56	41.1	17.26
1909.84	351.9	8.28						1909	.65	41.0	16.76
1928.15	344.0	10.39		A	\sim			1909	.74	42.2	16.50
1929.88	343.6	9.98						1909	.84	42.0	16.75
1961.66	342.4	11.57						1929	.88	38.0	17.25
2000.60	340.3	13.72						1961	.66	34.6	17.97
2000.67	340.1	13.56						2000	.60	30.7	18.97
2003.78	340.1	13.78						2000	.67	31.1	18.86
								2003	.78	30.4	18.81
WD	S Text File	Data		V UC	CAC4	pmRA	pmDE	N N	VDS T	ext File	Data
			A 🗹 🗸	<u>izieR</u> 459-	122798	35.5	-40.1				
			B 🗹 🗸	<u>izieR</u> 459-	122797	-30.6	142.2				
			СШ	<u>121ek</u> 459-	122000	26.9	0.6				

Figure 3. Proper Motion of STT 460 Components super-imposed on Aladin image using UCAC4 data.

from the others. (The arrows for B and C, which were added to the image, are not to scale. The arrow for A comes from Simbad's database).

2.2 Visual Observations

Both John Nanson and Wilfried Knapp made visual observations of the stars included in this report. John used a 152mm f/10 refractor, while Wilfried utilized a 140mm refractor and a 235mm SCT, as well as a masking device to evaluate what could be seen at lesser apertures.

STT 362 (Aql): John looked at STT 362 twice and found the B component to be more difficult than expected given the 7.60" separation and the 3.66 magnitudes of difference with the primary. B varied from an elongated smear to a definite point of light for very brief moments, making it impossible to estimate its magnitude. The general impression was B is fainter than the 11.93 shown for it in the WDS. Wilfried also looked at STT 362 twice and was able to split the AB pair on the second observation, but came to no conclusion on magnitude. Neither observer was able to catch sight of the C component. Wilfried was able to see nearby stars in the 13.5 magnitude range, which suggests C is fainter than that magnitude.

STT 368 (Aql): Wilfried observed STT 368 twice and apart from seeing an elongation of the AB pair, was unable to resolve the secondary. He caught a glimpse of C during the second observation at 100x, but was unable to catch sight of it again at higher magnifications, suggesting it may be significantly fainter than the WDS magnitude of 11.3. John resolved the AB pair at 253x and 380x with the six inch refractor during the one observation he made. He was able to see the C component clearly enough at 380x to compare it with three other stars, and found the star with a Vmag of 11.589 was closest in magnitude to C.

STT 381 (Aql): John observed STT 381 once and found the B component was tougher than expected for a pair with a separation of 14.7" and a magnitude difference of 3.2. The one comparison star he found had an incorrect Vmag of 10.298 (UCAC4 471-108123), but the f.mag for that star of 12.412 was more in line with the visual difficulty. Wilfried observed this pair twice and resolved B on the second attempt. He found a comparison star with an f.mag of 11.659 was a *(Continued on page 477)*

Page 477

STT Doubles with Large AM – Part V: Aquila, Delphinus, Cygnus, Aquarius

bit brighter than B, again suggesting B is fainter than the WDS magnitude of 11.2.

STT 409 (Del): Wilfried observed STT 409 once and was able to see B with a limiting aperture of 58mm, suggesting the WDS magnitude of 10.20 is correct. John also made one observation and found B was slightly brighter than a comparison star which was a magnitude fainter than the WDS value. Both observers were able to see C easily.

STT 460 (Aqr): John observed STT 460 several times and found it to be a real visual gem. Both the B and C components were very obvious on first sight, suggesting they're both brighter than the WDS values of 12.80 and 12.10, respectively. Nearby comparison stars suggested a magnitude for B of about 11.3. The C component appeared a bit brighter than B, which suggests a magnitude in the 10.6 range.

STT 532 (Aql): Wilfried observed STT 532 twice and was able to resolve B with averted vision during the first observation at a magnification of 470x. He found a nearby comparison star with an f.mag of 11.778 was similar in brightness to B, suggesting the WDS value of 11.90 is close. John observed STT 532 once and only managed a few fleeting glimpses of B, which were not enough to come to a conclusion on its magnitude.

STT 374 (Cyg): John observed STT 374 once and found the B component was very similar in magnitude to three comparison stars with Vmags ranging from 10.9 to 11.1, agreeing with the WDS value of 11.1. Wilfried looked at STT 374 twice and with the aid of the masking device also confirmed the WDS value.

STT 412 (Cyg): Wilfred viewed STT 412 twice and with the aid of the masking device concluded B is 1.5 magnitudes brighter than the WDS value of 13.1. John observed STT 412 once and found B was obviously brighter than the WDS value. A close comparison with the 11.22 magnitude C companion showed both B and C to be similar in magnitude, with C being slightly brighter than B. Comparison stars indicated the WDS magnitude for C is about right, leading to the conclusion that B is in the 11.5 to 11.8 magnitude range since it appears to about half a magnitude fainter than C.

STT 420 (Cyg): John observed this pair once and found B was very obvious at 190x in the six inch refractor, and also could see it at 152x. Given the 5.4" separation and 4.0 magnitude difference between primary and secondary, the WDS value for B of 10.7 seems to be about right. Wilfried looked at STT 420 twice but was unable to detect B due to poor seeing conditions.

STT 427 (Cyg): Wilfried observed this pair once

but was unable to resolve the two stars with a 140mm refractor. John observed it once with a 152mm refractor and was able to see the secondary at 152x and 253x. The difficulty seemed to be about what would be expected given the 4.07 magnitudes of difference and 4.2" separation.

STT 438 (Cyg): John looked at STT 438 twice. Seeing was poor during the first observation, but the secondary was glimpsed briefly a couple of times. During the second attempt, with better seeing, the secondary could be seen as a bump on the edge of the primary at 152x and 253x. A magnitude estimate wasn't possible, but given the three magnitudes of difference and the 2.3" separation, the visual difficulty was about what would be expected. Wilfried also looked at this pair twice. During the first observation, the secondary could be seen at 200x with the aperture reduced to 117mm, which would seem to confirm the WDS magnitude of 10.3 for B. Poor seeing during the second attempt prevented catching sight of the secondary.

2.3 Photometry and Astrometry Results

Several hundred images taken with iTelescope remote telescopes were in a first step plate solved and stacked with AAVSO VPhot. The stacked images were then plate solved with Astrometrica with UCAC4 reference stars with Vmags in the range 10.5 to 14.5mag. The RA/Dec coordinates resulting from plate solving with UCAC4 reference stars in the 10.5 to 14.5mag range were used to calculate Sep and PA using the formula provided by R. Buchheim (2008). Err Sep is calculated as SQRT(dRA^2+dSep^2) with dRA and dDec as average RA and Dec plate solving errors. Err PA is the error estimation for PA calculated as arctan (Err Sep/Sep) in degrees assuming the worst case that Err Sep points in the right angle to the direction of the separation means perpendicular to the separation vector. Mag is the photometry result based on UCAC4 reference stars with Vmags between 10.5 and 14.5mag. Err Mag is calculated as

$$Err_Mag = \sqrt{dV_{mag}^2 + \left[2.5\log_{10}\left(1 + \frac{1}{SNR}\right)\right]^2}$$

with dVmag as the average Vmag error over all used reference stars and SNR is the signal to noise ratio for the given star. The results are shown in Table 2 (dRA, dDec, dVmag and SNR not given due to space restrictions).

Summary

Tables 3 and 4 below compare the final results of (Continued on page 485)

STT Doubles with Large AM – Part V: Aquila, Delphinus, Cygnus, Aquarius

Table 2. Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT 362	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	Ν	Notes
A	18 48 13.818	10 38 34.16	10.005	0.104	105 676	0 770	7.898	0.130	2016 ECE	F	1
С	18 48 14.606	10 38 30.90	12.005	0.164	103.070	0.779	14.357	0.163	2015.505	5	Ţ
A	18 48 13.821	10 38 34.04					8.053	0.110		_	
С	18 48 14.619	10 38 30.98	12.156	0.170	104.580	0.800	13.983	0.132	2015.557	5	2
A	18 48 13.822	10 38 34.17					8.065	0.100			
С	18 48 14.595	10 38 30.97	11.836	0.213	105.685	1.029	14.292	0.143	2015.555	5	3
A	18 48 13.830	10 38 34.03					8.133	0.120			
С	18 48 14.616	10 38 30.77	12.037	0.205	105.714	0.977	14.128	0.131	2015.617	5	4
A	18 48 13.823	10 38 34.02					8.039	0.170			
С	18 48 14.617	10 38 30.88	12.119	0.184	105.017	0.869	14.267	0.176	2015.555	5	5
A	18 48 13.818	10 38 34.08					8.054	0.090			
С	18 48 14.612	10 38 30.88	12.135	0.163	105.290	0.769	14.291	0.100	2015.557	5	6
	18 48 13.862	10 38 34.22					8.121	0.090			
С	18 48 14.647	10 38 31.22	11.955	0.170	104.533	0.813	14.214	0.100	2015.617	5	7
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10 /0 12 020	10 20 24 102					9 052	0 110			
A	10 40 13.020	10 30 34.103	12.043	0.182	105.212	0.866	8.052	0.119	2015.575	35	8
С	18 48 14.616	10 38 30.943	_				14.219	0.138			
STT532	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	19 55 18.839	06 24 16.67	13.311	0.226	0.577	0.974	5.345	0.141	2015.569	4	9
В	19 55 18.848	06 24 29.98					11.309	0.151			
A	19 55 18.838	06 24 16.35	13.801	0.184	0.619	0.765	4.646	0.150	2015.569	5	10
В	19 55 18.848	06 24 30.15					11.197	0.158			
A	19 55 18.857	06 24 16.53	13.662	0.297	358.937	1.245	4.480	0.121	2015.615	5	11
B	19 55 18.840	06 24 30.19					11.646	0.154			
A	19 55 18.847	06 24 16.66	13.271	0.240	0.772	1.038	5.452	0.121	2015.615	5	12
В	19 55 18.859	06 24 29.93					11.453	0.130			
A	19 55 18.871	06 24 16.84	13.226	0.205	358.256	0.889	5.857	0.113	2015.569	5	13
В	19 55 18.844	06 24 30.06					11.349	0.126			
A	19 55 18.865	06 24 16.77	13,222	0.191	359,096	0.828	6.093	0.134	2015 615	6	14
В	19 55 18.851	06 24 29.99		0.101		0.020	11.519	0.138	2010.010		
A	19 55 18.853	06 24 16.637	13 414	0 227	359 713	0 971	5.312	0.131	2015 592	30	15
в	19 55 18.848	06 24 30.05	10.717	V.221	555.715	0.971	11.412	0.143	2013.392	50	10

## STT Doubles with Large AM – Part V: Aquila, Delphinus, Cygnus, Aquarius

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowl-edgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT381	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	Ν	Notes
A	19 43 21.085	04 10 27.96	14 510	0 100	2 067	0 7 9 1	7.482	0.190	2015 557	5	16
В	19 43 21.120	04 10 42.47	14.J15	0.190	2.007	0.701	12.106	0.192	2013.331	5	ΤU
A	19 43 21.077	04 10 27.97	14 500	0.160	1 000	2 642	7.936	0.150	0015 555	-	17
В	19 43 21.109	04 10 42.49	14.528	0.103	1.888	0.642	12.550	0.152	2015.555	5	1/
A	19 43 21.092	04 10 27.80					7.807	0.170			
В	19 43 21.121	04 10 42.35	14.556	0.255	1.708	1.003	12.443	0.174	2015.563	5	18
A	19 43 21.088	04 10 27.91					7.874	0.130			
В	19 43 21.126	04 10 42.60	14.701	0.213	2.216	0.829	12.483	0.131	2015.617	5	19
A	19 43 21.085	04 10 27.91					7.775	0.162			
в	19 43 21.119	04 10 42.478	14.576	0.210	1.970	0.824	12.396	0.164	2015.573	20	20
STT368	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	19 16 01.848	16 09 39.85	-	-			7.167	0.110			
С	19 16 02.889	16 09 34.80	15.825	0.241	108.609	0.872	13.245	0.119	2015.617	5	21
A	19 16 01.870	16 09 39.51					7.193	0.090			
C	19 16 02.889	16 09 34.84	15.406	0.212	107.646	0.789	13.178	0.099	2015.555	5	22
A	19 16 01.868	16 09 39.73					7.188	0.120			
С	19 16 02.896	16 09 34.72	15.635	0.106	108.689	0.390	13.314	0.127	2015.557	5	23
A	19 16 01.868	16 09 39.52					7.143	0.090			
C	19 16 02.898	16 09 34.73	15.593	0.213	107.889	0.781	13.142	0.101	2015.563	5	24
А	19 16 01.860	16 09 39.83	15 522	0 205	107 936	0 757	7.199	0.080	2015 617	5	25
С	19 16 02.885	16 09 35.05	13.322	0.205	107.950	0.757	13.178	0.085	2013.017		2.5
A	19 16 01.860	16 09 39.63	15.674	0.191	107.948	0.698	7.162	0.070	2015.555	5	26
C	19 16 02.895	16 09 34.80					13.225	0.074			
A	19 16 01.863	16 09 39.76	15.639	0.177	108.568	0.648	7.172	0.070	2015.557	5	27
C	19 16 02.892	16 09 34.78					13.238	0.074			
A	19 16 01.858	16 09 39.37	15.658	0.233	107.238	0.854	7.158	0.070	2015.563	5	28
C	19 16 02.896	16 09 34.73					13.212	0.075			
A	19 16 01.848	16 09 39.85	15.825	0.241	108.609	0.872	7.167	0.070	2015.617	5	29
C	19 16 02.889	16 09 34.80					13.245	0.084			
A	19 16 01.86	16 09 39.672	15.641	0.206	108.128	0.755	7.172	0.087	2015.578	45	30
С	19 16 2.892	16 09 34.806					13.220	0.095			

## STT Doubles with Large AM – Part V: Aquila, Delphinus, Cygnus, Aquarius

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowl-edgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT438	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	21 21 45.771	43 08 37.54	2 210	0 220	0 294	5 601	8.089	0.100	2015 620	6	21
в	21 21 45.772	43 08 39.75	2.210	0.220	0.204	3.091	9.719	0.101	2013.039		21
A	21 21 45.772	43 08 37.97	2 0 6 0	0 100	250 007	E 400	8.150	0.070	2015 (21	-	2.2
в	21 21 45.769	43 08 40.03	2.000	0.190	339.007	5.409	9.916	0.072	2013.021		32
A	21 21 45.772	43 08 37.755	0 105	0.000	250 700	5 600	8.120	0.086	0015 000	10	22
в	21 21 45.77	43 08 39.89	2.135	0.209	359.706	5.602	9.818	0.087	2015.630	10	33
STT427	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	21 03 39.890	31 03 44.55	2 000	0.264	155 252	2 075	7.682	0.100	2015 620	4	24
В	21 03 40.017	31 03 41.01	2.090	0.204	133.232	3.075	10.768	0.102	2013.039	4	34
A	21 03 39.893	31 03 44.53	4 610	0 172	155 200	2 126	7.455	0.110	2015 700	4	25
В	21 03 40.043	31 03 40.34	4.012	0.172	133.290	2.130	10.558	0.111	2013.700	4	33
A	21 03 39.898	31 03 44.63	1 212	0 1 9 9	151 101	2 692	7.641	0.070	2015 615	5	36
В	21 03 40.056	31 03 40.94	4.212	0.190	191,101	2.092	11.019	0.072	2013.013		50
A	21 03 39.893	31 03 44.52	2 010	0 1 9 4	152 020	2 697	7.674	0.070	2015 621	6	27
В	21 03 40.036	31 03 41.06	3.910	0.104	132.030	2.007	10.874	0.071	2013.021		57
A	21 03 39.891	31 03 44.67	4 017	0 170	150 007	2 410	7.663	0.070	2015 622	6	20
В	21 03 40.043	31 03 41.16	4.017	0.170	130.907	2.419	10.779	0.072	2013.032		20
A	21 03 39.893	31 03 44.58	4 120	0.201	152 076	0 701	7.623	0.086	2015 641	22	30
в	21 03 40.039	31 03 40.902	4.129	0.201	152.976	2.701	10.800	0.087	2015.041	23	59
STT420	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	20 54 22.261	40 42 10.57	5 276	0 234	2 841	2 543	6.622	0.130	2015 637	۲ ۲	40
В	20 54 22.284	40 42 15.84	3.270	0.234	2.011	2.343	10.364	0.133	2013.037		10
A	20 54 22.261	40 42 10.57	5 784	0 283	2 1 4 1	2 803	6.586	0.090	2015 639	4	41
В	20 54 22.280	40 42 16.35	5.764	0.200	2.111	2.005	10.689	0.095	2013.039	-	11
A	20 54 22.265	40 42 10.54	5 370	0 186	359 757	1 984	6.411	0.120	2015 700	5	12
В	20 54 22.263	40 42 15.91	3.370	0.100	333.131	1.904	10.030	0.121	2013.700		12
A	20 54 22.265	40 42 10.63	5 1/1	0 177	1 1 9 8	1 862	6.616	0.060	2015 615	5	13
В	20 54 22.275	40 42 16.07	3.111	0.177	1.190	1.002	10.549	0.062	2013.013		-15
A	20 54 22.263	40 42 10.57	5 605	0 1 9 1	2 326	1 052	6.612	0.060	2015 620	5	
В	20 54 22.283	40 42 16.17	5.005	0.191	2.520	1.992	10.794	0.090	2013.020		44
A	20 54 22.268	40 42 10.59	5 753	0 1 0 1	1 600	1 0.02	6.603	0.070	2015 632	5	15
В	20 54 22.283	40 42 16.34	J./JJ	0.191	1.033	1.302	10.673	0.077	2013.032		4.5
A	20 54 22.264	40 42 10.578	5 527	0.214	1 667	2 210	6.575	0.093	2015 640	27	46
в	20 54 22.278	40 42 16.113	5.557	0.214	1.007	2.210	10.517	0.099	2010.040	21	0 10

Table 2 continues on next page.

## STT Doubles with Large AM – Part V: Aquila, Delphinus, Cygnus, Aquarius

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowl-edgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT374	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	19 31 02.427	50 11 48.92	10 /01	0.220	200 010	0 647	7.486	0.050	2015 630	1	47
В	19 31 00.519	50 11 55.57	19.491	0.220	209.949	0.04/	11.204	0.054	2013.039	4	4/
A	19 31 02.435	50 11 48.67	10 574	0 1 7 7	000 004	0 510	7.267	0.110	0015 700		4.0
В	19 31 00.522	50 11 55.43	19.5/4	0.1//	290.204	0.518	11.113	0.111	2015.700		48
A	19 31 02.429	50 11 48.89	10 100	0 1 9 4	200 014	0 540	7.506	0.050	2015 621	0	4.0
В	19 31 00.522	50 11 55.56	19.400	0.104	290.014	0.340	11.235	0.051	2013.021	9	49
A	19 31 02.431	50 11 48.90	10 516	0 177	200 005	0 510	7.480	0.060	2015 622	6	5.0
В	19 31 00.521	50 11 55.57	19.010	0.1//	209.905	0.319	11.219	0.061	2013.032		50
A	19 31 02.43	50 11 48.845	10 517	0 1 9 0	200 039	0 559	7.435	0.072	2015 649	20	51
В	19 31 00.521	50 11 55.532	19.517	0.190	290.038	0.559	11.193	0.073	2015.040	20	51
STT412	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	20 45 43.086	50 40 25.93	25 898	0 262	279 243	0 579	7.209	0.130	2015 637	3	52
В	20 45 40.397	50 40 30.09	20.000	0.202	213.213	0.075	11.815	0.132	2010.007	Ľ	
A	20 45 43.097	50 40 25.94	25 995	0 205	278 986	0 452	7.161	0.130	2015 639	5	53
В	20 45 40.396	50 40 30.00	23.995	0.205	270.900	0.152	11.767	0.133	2013.035		55
A	20 45 43.105	50 40 25.88	26 048	0 170	279 056	0 375	6.951	0.140	2015 700	5	54
В	20 45 40.399	50 40 29.98	20.040	0.170	275.050	0.373	11.615	0.141	2013.700		51
А	20 45 43.107	50 40 25.96	26 082	0 184	279 133	0 405	7.168	0.110	2015 615	5	55
В	20 45 40.398	50 40 30.10	20.002	0.104	275.133	0.405	11.742	0.111	2013.013		55
А	20 45 43.101	50 40 26.10	26 039	0 1 9 8	278 926	0 437	7.156	0.100	2015 620	5	56
В	20 45 40.395	50 40 30.14	20.055	0.190	270.920	0.437	11.724	0.101	2013.020		50
А	20 45 43.106	50 40 26.01	25 926	0 170	279 099	0 375	7.171	0.100	2015 632	5	57
В	20 45 40.413	50 40 30.11	23.920	0.170	215.055	0.575	11.718	0.101	2013.032		57
A	20 45 43.1	50 40 25.97	25 998	0 201	279 074	0 442	7.136	0.119	2015 640	28	58
В	20 45 40.4	50 40 30.07	20.000	0.201	2.5.071	0.112	11.730	0.121	2010.010		
STT412	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
В	20 45 40.397	50 40 30.09	5.110	0.262	187.160	2,932	11.815	0.132	2015.637	3	59
С	20 45 40.330	50 40 25.02		0.202	10,1100	2.002	11.909	0.132			
В	20 45 40.396	50 40 30.00	5.030	0.205	185.096	2.336	11.767	0.133	2015.639	5	60
С	20 45 40.349	50 40 24.99		0.200	200.000	2.000	11.798	0.133			
В	20 45 40.399	50 40 29.98	4 926	0 170	185 870	1 980	11.615	0.141	2015 700	5	61
С	20 45 40.346	50 40 25.08	1.520	0.170	100.070	1.500	11.677	0.141	2010.700	Ľ	
В	20 45 40.398	50 40 30.10	5 029	0 184	184 988	2 100	11.742	0.111	2015 615	5	62
С	20 45 40.352	50 40 25.09	5.025	0.104	104.500	2.100	11.858	0.111	2013.013	Ľ	02
В	20 45 40.398	50 40 30.10	4 966	0 1 9 8	185 823	2 289	11.724	0.101	2015 620	5	63
С	20 45 40.345	50 40 25.16	4.500	0.190	100.020	2.205	11.800	0.101	2013.020		0.5
В	20 45 40.413	50 40 30.11	5 0.83	0 170	186 550	1 912	11.718	0.101	2015 632	5	64
С	20 45 40.352	50 40 25.06	5.005	0.1/0	100.000	1.712	11.804	0.101	2013.032		
В	20 45 40.4	50 40 30.063	5.023	0.201	185,919	2.288	11.730	0.121	2015 640	28	65
С	20 45 40.346	50 40 25.067	0.020				11.808	0.121			

Table 2 continues on next page.

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowl-edgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT412	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	20 45 43.086	50 40 25.93	26 214	0 262	269 011	0 572	7.209	0.130	2015 637	3	66
С	20 45 40.330	50 40 25.02	20.214	0.202	200.011	0.372	11.909	0.132	2013.037	5	00
A	20 45 43.097	50 40 25.94	26 140	0 205	267 017	0 450	7.161	0.130	2015 620	5	67
С	20 45 40.349	50 40 24.99	20.140	0.205	201.911	0.430	11.798	0.133	2013.039	5	0/
A	20 45 43.105	50 40 25.88	26 230	0 170	260 253	0 372	6.951	0.140	2015 700	5	69
С	20 45 40.346	50 40 25.08	20.239	0.170	200.233	0.372	11.677	0.141	2013.700	5	00
A	20 45 43.107	50 40 25.96	26 203	0 1 9 4	269 007	0 403	7.168	0.110	2015 615	5	69
С	20 45 40.352	50 40 25.09	20.205	0.104	200.097	0.405	11.858	0.111	2013.013		0.9
A	20 45 43.101	50 40 26.10	26 215	0 100	267 045	0 434	7.156	0.100	2015 620	5	70
С	20 45 40.345	50 40 25.16	20.213	0.190	207.945	0.434	11.800	0.101	2013.020		/0
A	20 45 43.106	50 40 26.01	26 197	0 170	267 922	0 371	7.171	0.100	2015 632	5	71
С	20 45 40.352	50 40 25.06	20.107	0.170	201.922	0.371	11.804	0.101	2013.032		/ ¹
A	20 45 43.100	50 40 25.97	26 201	0 201	269 024	0 430	7.136	0.119	2015 640	20	72
С	20 45 40.346	50 40 25.067	20.201	0.201	200.024	0.439	11.808	0.121	2015.040	20	12
STT409	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	20 40 17.693	03 26 28.70	16 803	0 255	83 507	0 868	6.930	0.110	2015 637	4	73
В	20 40 18.808	03 26 30.60	10.005	0.200	03.307	0.000	10.701	0.111	2013.037	-	,5
A	20 40 17.712	03 26 28.64	16 769	0 304	83 598	1 039	6.907	0.090	2015 639	3	74
В	20 40 18.825	03 26 30.51	10.705	0.504	03.390	1.000	10.635	0.092	2013.035		/1
A	20 40 17.715	03 26 28.52	16 728	0 184	83 478	0 632	6.698	0.090	2015 700	5	75
В	20 40 18.825	03 26 30.42	10.720	0.104	03.170	0.032	10.527	0.091	2013.700		15
A	20 40 17.711	03 26 28.76	16 852	0 213	83 834	0 723	6.847	0.060	2015 615	5	76
В	20 40 18.830	03 26 30.57	10.032	0.215	03.034	0.725	10.610	0.061	2013.013		,,,,
A	20 40 17.709	03 26 28.76	16 739	0 213	83 620	0 728	6.961	0.050	2015 620	5	77
В	20 40 18.820	03 26 30.62	10.755	0.215	03.020	0.720	10.650	0.050	2013.020		
A	20 40 17.708	03 26 28.56	16 812	0 177	83 682	0 603	6.885	0.050	2015 632	5	78
В	20 40 18.824	03 26 30.41	10.012	0.177		0.000	10.696	0.051	2010.002		, 0
A	20 40 17.708	03 26 28.657	16.784	0.228	83,620	0.780	6.871	0.078	2015.640	27	79
В	20 40 18.822	03 26 30.522					10.637	0.079			
STT460	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	22 05 39.244	01 46 56.04	14.360	0.248	339.719	0.991	8.219	0.120	2015.637	5	80
В	22 05 38.912	01 47 09.51					12.322	0.124			
A	22 05 39.235	01 46 55.80	14.499	0.213	339.606	0.840	8.196	0.080	2015.639	5	81
В	22 05 38.898	01 47 09.39					12.196	0.088			
A	22 05 39.239	01 46 55.56	14.517	0.212	339.758	0.837	8.022	0.110	2015.700	5	82
В	22 05 38.904	01 47 09.18					12.191	0.113			
A	22 05 39.235	01 46 55.83	14.496	0.198	339.980	0.785	8.165	0.100	2015.615	5	83
В	22 05 38.904	01 47 09.45					12.144	0.102			
A	22 05 39.230	01 46 55.82	14.484	0.177	339.647	0.700	8.168	0.080	2015.620	5	84
В	22 05 38.894	01 47 09.40					12.128	0.081			
A	22 05 39.234	01 46 55.77	14.465	0.163	339,620	0.645	8.205	0.050	2015.632	5	85
В	22 05 38.898	01 47 09.33					12.179	0.053			
A	22 05 39.236	01 46 55.803	14.470	0.204	339.722	0.807	8.163	0.093	2015.640	30	86
В	22 5 38.902	01 47 09.377					12.193	0.096			

Table 2 concludes on next page.

Table 2 (conclusion). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch in 2015 and N is the number of images (usually with 1s exposure time) used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowl-edgements). The average results over all used images are given in the line below the individual stacks in red and bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

STT460	RA	Dec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	Date	N	Notes
A	22 05 39.244	01 46 56.04	10 247	0 249	20 100	0 7 2 0	8.219	0.120	2015 627	F	07
С	22 05 39.888	01 47 12.69	19.247	0.240	30.109	0.739	11.975	0.123	2013.037	5	0 /
A	22 05 39.235	01 46 55.80	10 205	0 212	20 462	0 621	8.196	0.080	2015 620	5	0.0
С	22 05 39.868	01 47 12.60	19.295	0.215	29.402	0.031	11.928	0.087	2013.039	5	00
A	22 05 39.239	01 46 55.56	10 422	0 212	20 251	0 626	8.022	0.110	2015 700	E	00
С	22 05 39.874	01 47 12.49	19.425	0.212	29.331	0.020	11.860	0.112	2013.700	5	09
A	22 05 39.235	01 46 55.83	10 221	0 1 0 9	20 410	0 5 9 0	8.165	0.100	2015 615	E	0.0
С	22 05 39.868	01 47 12.66	19.321	0.190	29.419	0.569	11.873	0.102	2013.013	5	90
A	22 05 39.230	01 46 55.82	10 262	0 177	20 452	0 524	8.168	0.080	2015 620	E	0.1
С	22 05 39.865	01 47 12.68	19.302	0.1//	29.432	0.524	11.868	0.081	2013.020	5	91
A	22 05 39.234	01 46 55.77	10 254	0 1 6 2	20 467	0 192	8.205	0.050	2015 622	E	0.2
С	22 05 39.869	01 47 12.62	19.334	0.105	29.407	0.402	11.910	0.052	2013.032	5	92
A	22 05 39.236	01 46 55.803	10 224	0.204	20 542	0 604	8.163	0.093	2015 640	20	0.2
С	22 5 39.872	01 47 12.623	19.334	0.204	29.545	0.604	11.902	0.096	2015.640	30	93

Table 2 Notes:

- iT21 stack 5x3s. A too bright for reliable photometry. SNR for C<15. Mag B measured with 11.945 with SNR 23.38
- iT24 stack 5x3s. A too bright for reliable photometry. SNR for C<20. Mag B measured with 11.973 with SNR 44.48
- iT24 stack 5x3s_3. A too bright for reliable photometry. SNR for C<15. Mag B measured with 11.958 with SNR 42.34
- iT24 stack 5x3s. A too bright for reliable photometry. SNR for C<20. Mag B measured with 12.138 with SNR 43.31
- 5. iT24 stack 5x3s_2. A too bright for reliable photometry. Mag B measured with 11.983 with SNR 67,62
- 6. iT24 stack 5x3s_3. A too bright for reliable photometry. Mag B measured with 11.972 with SNR 76,22
- 7. iT24 stack 5x6s. A too bright for reliable photometry. Mag B measured with 12.089 with SNR 45.97
- 8. A too bright for reliable photometry. Average mag for B is 12.008
- 9. iT24 stack 4x2s. SNR B<20
- 10. iT24 stack 5x1s
- 11. iT24 stack 5x1s_2. SNR B<20
- 12. iT24 stack 5x2s
- 13. iT24 stack 5x3s. SNR B<20
- 14. iT24 stack 3x3s_2

- SNR for B in some images <20 with B sitting directly in a telescope spike. A far too bright for reliable photometryiT24 stack 3x3s_2
- 16. iT24 stack 5x1s
- 17. iT24 stack 5x1s_2
- 18. iT24 stack 5x1s_3
- 19. iT24 stack 5x3s
- A too bright for reliable photometry. High dVmag despite good image quality indicates not his good UCAC4 Vmag data quality in this FoV iT24 stack 5x3s
- 21. iT24 stack 5x1s
- 22. iT24 stack 5x1s_2
- 23. iT21 stack 5x1s 3
- 24. iT24 stack 5x1s 4
- 25. iT24 stack 5x3
- 26. iT24 stack 5x3s 2
- 27. iT24 stack 5x3s 3
- 28. iT24 stack 5x3s 4
- 29. iT24 stack 5x3s 5
- **30.** A too bright for reliable photometry. Values for A are probably rather for AB
- 31. iT18 stack 5x3s. Heavily overlapping star disks, photometry and astrometry unreliable
- 32. iT24 stack 5x3s. Heavily overlapping star disks, photometry and astrometry unreliable
- 33. Heavily overlapping star disks, photometry and astrom-

#### etry unreliable. See Figure 4.

- 34. iT18 stack 4x3s. Overlapping star disks
- 35. iT21 stack 4x3s. Overlapping star disks
- 36. iT24 stack 5x3s. Overlapping star disks
- 37. iT24 stack 5x3s_2. Overlapping star disks
- 38. iT24 stack 5x3s 3. Overlapping star disks
- **39.** A too bright for reliable photometry. Overlapping star disks. See Figure 5.
- 40. iT11 stack 3x3s. Overlapping star disks
- 41. iT18 stack 4x3s. Overlapping star disks
- 42. iT21 stack 5x3s. Overlapping star disks
- 43. iT24 stack 5x3s. Overlapping star disks
- 44. iT24 stack 5x3s_2. Overlapping star disks. SNR B<20
- 45. iT24 stack 5x3s_3. Overlapping star disks
- 46. A too bright for reliable photometry. Overlapping star disks
- 47. iT18 stack 4x3s
- 48. iT21 stack 5x3s
- 49. iT24 stack 5x3s
- 50. iT24 stack 5x3s
- 51. A too bright for reliable photometry
- 52. iT11 stack 3x3s
- 53. iT18 stack 5x3s
- 54. iT21 stack 5x3s
- 55. iT24 stack 5x3s
- 56. iT24 stack 5x3s 2
- 57. iT24 stack 5x3s 3
- 58. A too bright for reliable photometry
- 59. iT11 stack 3x3s
- 60. iT18 stack 5x3s
- 61. iT21 stack 5x3s
- 62. iT24 stack 5x3s



Figure 4. To our surprise, iT18 provided despite rather modest technical specifications, at least a hint of resolution of this close pair with a very bright primary

- 63. iT24 stack 5x3s_2
- 64. iT24 stack 5x3s_3
- 65. Summary line
- 66. iT11 stack 3x3s
- 67. iT18 stack 5x3s
- 68. iT21 stack 5x3s
- 69. iT24 stack 5x3s
- 70. iT24 stack 5x3s 2
- 71. iT24 stack 5x3s 3
- 72. A too bright for reliable photometry
- 73. iT11 stack 4x3s
- 74. iT18 stack 3x3s
- 75. iT21 stack 5x3s
- 76. iT24 stack 5x3s
- 77. iT24 stack 5x3s 2
- 78. iT24 stack 5x3s 3
- 79. A too bright for reliable photometry
- 80. iT11 stack 5x3s
- 81. iT18 stack 5x3s
- 82. iT21 stack 5x3s
- 83. iT24 stack 5x3s
- 84. iT24 stack 5x3s 2
- 85. iT24 stack 5x3s 3
- 86. A too bright for reliable photometry
- 87. iT11 stack 5x3s
- 88. iT18 stack 5x3s
- 89. iT21 stack 5x3s
- 90. iT24 stack 5x3s
- 91. iT24 stack 5x3s 2
- 92. iT24 stack 5x3s 3
- 93. A too bright for reliable photometry



Figure 5. Not as close as STT438, but still difficult to resolve with the equipment currently available to us - again iT18 provided a hint of resolution of this pair with a very bright primary

#### (Continued from page 477)

our research with the WDS data that was current at the time we began working on our current group of stars.

In Table 3 the results of our photometry have been averaged for each star. Because we're aware that both the NOMAD-1 and the UCAC4 catalogs are frequently consulted when making WDS evaluations of magnitudes changes, the data from those catalogs has also been included for each of the stars.

Red type has been used in Tables 3 and 4 to call attention to significant differences from the WDS data. With regard to Table 3, those magnitudes that differ by two tenths of a magnitude or more from the WDS values have been highlighted. In Table 4, differences in separation in excess of two-tenths of an arc second are highlighted, as are all position angles which differ by more than a degree.

Subsequent to our measures, as a quality check for our astrometry results we turned to the URAT1 catalog for the most recent precise professional measurements available. We used its coordinates to calculate the Sep and PA for all objects in this report for which URAT1 data was available and compared these values with our results, which are shown in Table 5.

#### Acknowledgements:

The following tools and resources have been used for this research:

- Washington Double Star Catalog as data source for the selected objects
- iTelescope: Images were taken with
  - iT24: 610mm CDK with 3962mm focal length. CCD: FLI-PL09000. Resolution 0.62 arcsec/ pixel. V-filter. Located in Auberry, California. Elevation 1405m
  - iT11: 510mm CDK with 2280mm focal length. CCD: FLI ProLine PL11002M. Resolution 0.81 arcsec/pixel. B- and V-Filter. Located in Mayhill, New Mexico. Elevation 2225m
  - iT18: 318mm CDK with 2541mm focal length. CCD: SBIG-STXL-6303E. Resolution 0.73 (Continued on page 487)

	WDS Mag	NOMAD-1 VMag	UCAC4 VMa	UCAC4 f. mag	Average of Photometry Measures	Results of Visual Observations
STT 362 C	14.00	-	-	13.627	14.219	Neither observer was able to detect C.
STT 532 B	11.90	-	-	-	11.412	One observation of B, which suggested WDS magnitude is close.
STT 381 B	11.20	-	-	12.062	12.396	Two observations, one suggesting a magnitude near 12.4 and one suggesting a magnitude fainter than 11.7.
STT 368 C	11.30	-	-	13.159	13.220	One observation suggesting C is significantly fainter than the WDS value, one suggesting a magnitude near 11.6.
STT 438 B	10.30	-	9.802	-	9.818	Two observations which suggested B was close the WDS value.
STT 427 B	11.90	-	-	-	10.800	One observation which suggested the WDS value was about right based on difficulty.
STT 420 B	10.70	-	-	-	10.517	One observation which suggested the WDS value was about right based on difficulty.
STT 374 B	11.10	11.520	-	10.976	11.193	Three observations confirming or suggesting the WDS value is close.
STT 412 B	13.10	10.760	-	11.594	11.730	Three observations, all indicating B is about 1.5 magnitudes brighter than WDS value.
STT 412 C	11.22	-	11.220	11.639	11.808	One observation which suggested C is slightly brighter than B.
STT 409 B	10.20	10.104	10.199	9.856	10.637	One observation found B equal to WDS value, one found it about half a magnitude fainter.
STT 460 B	12.80	-	-	12.057	12.193	One observation indicating B is clearly brighter than WDS value, estimate of a magni- tude of 11.3 based on comparison star.
STT 460 C	12.10	-	-	11.974	11.902	One observation indicating C is clearly brighter than WDS value and a bit brighter than B - estimate magnitude of 10.6 based on comparison star.

Table 3. Photometry and Visual Results Compared to WDS

	WDS Coordinates	WDS Sep	WDS PA	Astrometry Coordinates	Astrometry Sep	Astrometry PA
STT 362 AC	18:48:13.819 +10:38:33.899	12.0	104	18 48 13.828 +10 38 34.103	12.043	105.212
STT 532 AB	19:55:18.791 +06:24:24.301	13.6	359	19 55 18.853 +06 24 16.637	13.414	359.713
STT 381 AB	19:43:21.089 +04:10:27.900	14.7	2	19 43 21.085 +04 10 27.910	14.576	1.970
STT 368 AC	19:16:01.839 +16:09:39.501	15.8	108	19 16 01.86 +16 09 39.672	15.641	108.128
STT 438 AB	21:21:45.801 +43:08:38.102	2.3	357	21 21 45.772 +43 08 37.755	2.135	359.706
STT 427 AB	21:03:39.871 +31:03:44.698	4.2	151	21 03 39.893 +31 03 44.58	4.129	152.976
STT 420 AB	20:54:22.253 +40:42:10.605	5.4	0	20 54 22.264 +40 42 10.578	5.537	1.667
STT 374 AB	19:31:02.423 +50:11:48.701	19.4	291	19 31 02.430 +50 11 48.845	19.517	290.038
STT 412 AB	20:45:43.080 +50:40:25.905	25.9	279	20 45 43.10 +50 40 25.97	25.998	279.074
STT 412 BC	20:45:40.402 +50:40:30.093	5.0	186	20 45 40.40 +50 40 30.063	5.023	185.919
STT 412 AC	20:45:43.080 +50:40:25.905	26.2	268	20 45 43.100 +50 40 25.97	26.201	268.024
STT 409 AB	20:40:17.638 +03:26:28.500	16.8	84	20 40 17.708 +03 26 28.657	16.784	83.620
STT 460 AB	22:05:39.203 +01:46:56.300	13.8	340	22 05 39.236 +01 46 55.803	14.470	339.722
STT 460 AC	22:05:39.203 +01:46:56.300	18.8	30	22 05 39.236 +01 46 55.803	19.334	29.543

Table 4. Astrometry Results Compared to WDS

Table 5. Astrometry Results Compared with URAT1 Coordinates

Object	URAT1 Sep	iTelescope Sep	Err Sep	Within Error Range?	URAT1 PA	iTelescope PA	Err PA	Within Error Range?
STT 362 AC	12.070	12.043	0.182	Yes	105.247	105.212	0.866	Yes
STT 381 AB	14.579	14.576	0.210	Yes	2.100	1.970	0.824	Yes
STT 368 AC	15.650	15.641	0.206	Yes	108.214	108.128	0.755	Yes
STT 420 AB	5.697	5.537	0.214	Yes	1.076	1.667	2.210	Yes
STT 374 AB	19.515	19.517	0.190	Yes	290.098	290.038	0.559	Yes
STT 412 AB	26.040	25.998	0.201	Yes	279.048	279.074	0.442	Yes
STT 412 BC	5.011	5.023	0.201	Yes	185.523	185.919	2.288	Yes
STT 412 AC	26.214	26.201	0.201	Yes	268.048	268.024	0.439	Yes
STT 409 AB	16.736	16.784	0.228	Yes	83.640	83.620	0.780	Yes
STT 460 AB	14.407	14.470	0.204	Yes	339.814	339.722	0.807	Yes
STT 460 AC	19.339	19.334	0.204	Yes	29.610	29.543	0.604	Yes

(Continued from page 485)

- arcsec/pixel. V-filter. Located in Nerpio, Spain. Elevation 1650m
- iT21: 431mm CDK with 1940mm focal length. CCD: FLI-PL6303E. Resolution 0.96 arcsec/ pixel. V-filter. Located in Mayhill, New Mexico. Elevation 2225m
- AAVSO VPhot for initial plate solving
- AAVSO APASS providing Vmags for faint reference stars (indirect via UCAC4)
- UCAC4 catalog (online via the University of Heidelberg website and Vizier and locally from USNO DVD) for counterchecks and for high precision plate solving
- Aladin Sky Atlas v8.0 for counterchecks
- SIMBAD, VizieR for counterchecks
- 2MASS All Sky Catalog for counterchecks
- URAT1 Survey (preliminary) for counterchecks
- AstroPlanner v2.2 for object selection, session planning and for catalog based counterchecks
- MaxIm DL6 v6.08 for plate solving on base of the

UCAC4 catalog

• Astrometrica v4.8.2.405 for astrometry and photometry measurements.

Our thanks to Bill Hartkopf for supplying the WDS text file for STT 460.

#### References

- Buchheim, Robert, 2008, "CCD Double-Star Measurements at Altimira Observatory in 2007", *Journal of Double Star Observations*, **4**, 27-31.
- Burnham, S.W., 1875, "Notes on Double Stars", *Astronomische Nachrichten*, **85**, 271-272.
- Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole, Parts I and II, University of Chicago Press, Chicago.
- Hussey, W.J., 1901, Micrometrical Observations of the Double Stars Discovered at Pulkowa Made with the Thirty-Six-Inch and Twelve-Inch Refractors of Lick Observatory, pp. 14-16., A.J. Johnston, Sacramen-