STT Doubles with Large $\Delta \mathbf{M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Wilfried R.A. Knapp
Vienna, Austria
wilfried.knapp@gmail.com
John Nanson
Star Splitters Double Star Blog
Manzanita, Oregon
jnanson@nehalemtel.net

Abstract

The results of visual double star observing sessions suggested a pattern for STT doubles with large delta_M of being harder to resolve than would be expected based on the WDS catalog data. It was felt this might be a problem with expectations on one hand, and on the other might be an indication of a need for new precise measurements, so we decided to take a closer look at a selected sample of STT doubles and do some research. Again like for the other STT objects covered so far several of the components show parameters quite different from the current WDS data.

1. Introduction

As follow up to our reports so far we finish this STT series with objects in the constellations Tau, Per,

Ori, Cam, Mon, Cnc and Peg (see Table1). All values based on WDS data as of beginning of 2016.

Table 1. WDS catalog data per begin of 2016 for the selected STT objects

WDS ID	Name		RA	Dec	Sep	M1	M2	PA	Δ M	Con
05417+1614	STT114	AB	05:41:40.770	+16:14:02.4	3.0	8.40	10.60	278	2.20	Tau
$03334+2322$	STT57	CD	03:33:26.530	+23:23:03.5	9.9	7.67	12.00	320	4.33	Tau
05272+1758	STT107	AB	05:27:10.090	+17:57:44.0	10.0	5.39	10.10	306	4.71	Tau
05272+1758	STT107	AC	05:27:10.090	+17:57:44.0	10.0	5.39	11.80	347	6.41	Tau
05459+2555	STT116	AC	05:45:55.390	+25:54:49.3	17.9	7.27	12.90	65	5.63	Tau
$04162+3452$	STT76	AB	04:16:10.609	+34:52:07.7	3.8	7.7	12.40	210	4.70	Per
02533+4834	STT48	AB	02:53:21.070	+48:34:11.9	6.6	6.5	10.60	318	4.10	Per
03483+5044	STT63	AB	03:48:18.080	+50:44:12.4	6.8	6.2	11.20	270	5.00	Per
05379+0715	STT518	AB	05:37:55.590	+07:14:55.5	2.1	8.8	12.80	240	4.00	Ori
05135+0158	STT517	AB, C	05:13:31.550	+01:58:03.7	6.5	6.13	13.00	138	6.87	Ori
$06282+7032$	STT136	AB	06:28:14.490	+70:32:07.0	55.0	6.04	11.00	82	5.00	Cam
07012+1146	STT163	AB, C	07:01:09.851	+11:46:28.7	14.5	6.41	12.00	165	5.59	Mon
$09162+2324$	STT198	AB	09:16:11.281	+23:24:10.4	14.6	7.74	12.00	121	4.50	Cnc
$23074+2035$	STT488	AB	23:07:25.502	+20:34:53.802	14.6	6.7	10.40	335	3.70	Peg
$22148+2231$	STT467	AB	22:14:48.567	+22:31:24.299	23.9	6.7	10.70	274	4.00	Peg

Journal of Double Star Observations

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

2. Further Research

Following the procedure for the earlier parts of our report we concluded again that the best approach would be to check historical data on all objects, observe them visually with the target of comparing with the existing data and obtain as many images as possible suitable for photometry.

2.1 Historical Research and Catalog Comparisons

Quite a few of the stars in this survey have notable historical aspects which merit some comment. Three main research sources were used for this section of this paper, the first of which was W.J. Hussey's Micrometrical Observations of the Double Stars Discovered at Pulkowa, published in 1901, which provided preliminary historical information on each of the stars. Hussey's book includes his observations and measures of all the stars originally listed in Otto Wilhelm Struve's 1845 Pulkovo Catalog, as well as data beginning with the date of first measure and continuing through the following years up to 1900. That data, plus inclusion of the background for the Pulkovo Catalog, makes Hussey's book a valuable source of reference. Another source consulted were the two volumes (Part I and Part II) which make up S.W. Burnham's A General Catalogue of Double Stars Within 121° of the North Pole. The third source consulted was Otto Struve's 1845 Catalogue de 514 Étoiles Doubles et Multiples. In addition, Bill Hartkopf of the USNO graciously provided the text files for STT 57, STT 116, STT 467, and STT 518.

Several of the stars mentioned below were dropped from the second edition of Otto Struve's Pulkovo Catalogue (published in 1850) because the separations exceeded $16^{\prime \prime}$, which was the maximum catalog separation established for stars with companions fainter than ninth magnitude (Hussey, 1901, p. 16). Fortunately, Hussey included all of the rejected stars in his 1901 book.

STT 198 (Cnc): Otto Struve's 1845 catalog shows an estimated separation of ten seconds for this pair, but no exact measure. Apparently he decided the separation of this pair exceeded $16^{\prime \prime}$ since it was dropped from his 1850 catalog. Dembowski reported he was unable to see the secondary in 1865 and 1866. Interestingly, according to S.W. Burnham, the only measures of STT 198 as of the time of Hussey's writing are those of Hussey and Burnham.

STT 163 (Mon): The C component was added by S.W. Burnham in 1879, with measures of 14.18 " and 155.5 degrees, later supplemented with another measure by him in 1905 of 14.33 " and 160.4 degrees.

STT 517 (Ori): The C component was added in 1878 by Asaph Hall, using the 26 inch USNO Clark
refractor, with measures of 6.74 " and 134.7 degrees, later supplemented with an 1888 measure of $6.90^{\prime \prime}$ and 138.3 degrees. Burnham refers to it as Hl 2 on p .51 of his 1906 Catalog, Part I.

STT 518 (Ori): Hussey states that because of the faintness of the B component (WDS magnitude is 12.8), neither Otto Struve nor Dembowski attempted measurements of it. The first known measure of the AB pair was made by Hussey in 1898 while using the Lick 36 inch refractor, with a separation of $1.49^{\prime \prime}$ and a position angle of 281.7 degrees. The C component was first measured by Burnham in 1905 at 40.21 " and 238.4 degrees, but the WDS text file for STT 518 also shows an 1898 measure of $40.405^{\prime \prime}$ and 238.6 degrees which was made from a photographic plate, and is the one listed as Obs 1 in the WSD catalog.

STT 467 (Peg): This is another pair which was rejected by Otto Struve in his 1850 catalog because the distance exceeded the 16 " limit. His 1845 catalog shows an estimated separation of $16^{\prime \prime}$, and a look at the WDS text file for STT 467 shows Mädler provided measures in 1843 of 22.95 " and 272.5 degrees. The first recorded observation of this pair was made in 1827 by Nanson Herschel, who estimated a separation of 20 " and a position angle of 270 degrees, which also comes from the STT 467 WDS text file.

STT 488 (Peg): According to Hussey, Otto Struve rejected this pair because the companion was considered too faint to measure. Struve's 1845 catalog shows an estimated distance of 12 seconds, with magnitudes of 7 and 11. Hussey shows Mädler also looked at this pair in 1845 and estimated a distance of 14 ". The first actual measure of STT 488 appears to have been made in 1865 by Dembowski, who recorded a separation of 13.46 " and a position angle of 335.0 degrees. Both Burnham and Hussey refer to this pair as HO 486, attributing it to G.W. Hough, who measured the two stars in 1892 at 14.0 " and 334.0 degrees.

STT 57 (Tau): What is now the CD pair was originally the AB pair, first measured by Otto Struve in 1854 at 10.0 " and 319 degrees. See Figure 1. What is now the AC pair was first measured F.G.W. Struve in 1823 at $71.64^{\prime \prime}$ and 34.6 degrees. That pair is identified by both Hussey and Burnham as $\sigma 95$, and was also assigned by Otto Struve to the appendix of his 1845 catalog as number 35. The WDS text file for STT 57 shows what is now the AB pair was added to this system in 1907 by S.W. Burnham with measures of 34.95 " and 169.6 degrees

STT 107 (Tau): See Figure 2. Hussey notes the C component was first seen in 1850 by Otto Struve, but
(Text continues on page 177)

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Figure 1. Aladin image with component labels of STT 57 added.

Figure 2. Aladin image with component lables of STT 107 added.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Figure 3. Aladin image with components of STT 116 labeled.
(Continued from page 175)
not measured, although Struve noted it was closer to B than to A. He left a sketch showing a position angle of about 335 degrees. Hussey provided the first measures for the AC pair, measuring it once at the end of 1898 and twice at the beginning of 1899 , resulting in an averaged separation of $10.0^{\prime \prime}$ and averaged position angle of 341.1 degrees.

STT 116 (Tau): See Figure 3. The AB pair, STF 785, was first measured by F.G.W. Struve in 1830 at 13.81 " and 348.6 degrees. The AC, AD, AR, and DE components are all labeled as STT 116 in the WDS, but the AC pair is the only one that was discovered by Otto Struve, who measured it at $18.26^{\prime \prime}$ and 66 degrees in 1846. AD was first measured by S. W. Burnham in 1911 at 201.40 " and 9.8 degrees. The WDS text file shows the 1898 Obs1 measure for AD was made on a photographic plate of that date. Two other measures are also listed in the text file which were made from 1908 and 1909 plates. The AR pair received its first measure of 31.93 " and 72.1 degrees in 1908, by Erich Przybyllok, who was associated with the Heidelberg Observatory, while using a 12.5 inch refractor. The WDS Obs1 measure for the AR pair, which is also from 1908, was made from a photographic plate. And the
last pair, DE, was first measured in 1890 by Kenneth J. Tarrant at 6.89 " and 250.4 degrees according to the WDS text file.

2.2 Visual Observations

Both John Nanson and Wilfried Knapp made visual observations of the stars included in this report. Nanson used a $127 \mathrm{~mm} \mathrm{f} / 9.3$ refractor, a $152 \mathrm{~mm} \mathrm{f} / 10$ refractor, and a 235 mm SCT, while Knapp utilized 140 mm and 185 mm refractors as well as a masking device to evaluate what could be seen at lesser apertures.

STT 136 (Cam): Nanson made one observation of this pair with the 152 mm refractor and may have had a glimpse of B, but it was far from definitive. The best result was at 152 x , which seemed to show a faint speck of a light on the edge of the primary at the correct PA. An attempt was made to resolve B at 607 x , but it would not come to focus because of poor seeing. Thus, no conclusion was reached on the magnitude of B. Knapp made one observation with the 185 mm refractor and was able to resolve B with the aperture reduced to 140 mm , suggesting a magnitude much fainter than the WDS value of 11.0.

STT 198 (Cnc): Knapp was unable to resolve this pair with both the 140 mm and 185 mm refractors, suggesting the magnitude of B is much fainter than the

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

WDS value of 12.0, a conclusion reinforced by being able to easily see a 12.36 magnitude star in the 140 mm refractor. Nanson found B very tough to see in the 152 mm refractor, able to detect it only with averted vision, which also indicates a magnitude fainter than the WDS value, especially when the 14.6 " separation of the pair is taken into consideration.

STT 163 (Mon): Using the 152 mm refractor, Nanson observed C with averted vision, which was made more difficult than normal because the first quarter moon was slightly less than 10 degrees to the north with haze in the sky. UCAC4 509-033885 was of similar difficulty (Vmag 11.890), suggesting the WDS magnitude of 12.0 for C is close. Knapp used the 185 mm refractor to observe C and found it was still visible with the aperture reduced to 140 mm , which also indicates the WDS value for C is close.

STT 517 (Ori): Knapp detected C as a spot of light at 360 x in the 185 mm refractor in difficult seeing, indicating C might be a bit brighter than the WDS value of 13.0. Nanson caught the C component at 152x, 203x, and 253 x with the 152 mm refractor. Averted vision was needed at 152 x , but C was seen with direct vision several times at 203x and 253x. The first quarter moon was about 35 degrees to the northeast with some haze in the air, which would make it very unlikely the star is as faint as 13.0. No obvious comparison stars seen.

STT 518 (Ori): Nanson needed magnifications of 487x and 607x to detect the B component of STT 518 in the 152 mm refractor. Based on that, the WDS listed separation of 2.1 " is probably about right, but given the interference from the moon, it's possible B is about half a magnitude brighter than the WDS value of 12.8. C was rather difficult to see at 203 x and 253 x , and not visible at 152 x . It seemed to be just slightly brighter (slightly easier to see) than STT 517 C above, suggesting the magnitudes for one of the two stars is wrong (the WDS value for STT 518 C is 12.25). Knapp was unable to resolve B definitively in the 185 mm refractor under difficult seeing conditions, but was able to detect the much wider separated C (39.5 ") with the aperture reduced to 100 mm .

STT 467 (Peg): Using the 235 mm SCT, Nanson Found B to be about half a magnitude brighter than a 12.8 magnitude comparison star, indicating B may be in the 12.2 to 12.3 range. At a minimum, B certainly seemed fainter than the WDS 10.7 magnitude.

STT 488 (Peg): Nanson found B appeared slightly brighter in the 235 mm SCT than a 12.6 magnitude comparison star, and noted it appeared distinctly fainter than the WDS value of 10.4.

STT 48 (Per): Magnifications of 152x, 253x, and

380x may have resulted in a glimpse of the secondary, but it was far from conclusive. This observation, as well as the next one, were made by Nanson with the 152 mm refractor under difficult seeing conditions.

STT 63 (Per): A clear elongation of the secondary was seen by at 253x, followed by a brief glimpse of the secondary, which wasn't seen again with the further observation.

STT 76 (Per): No observations made for this pair be either observer.

STT 57 (Tau): Knapp was unable to definitively resolve the B component with the 185 mm refractor, suggesting it's fainter than the 12.8 magnitude listed for it in the WDS. D could be seen with the aperture reduced to 140 mm , which seems to confirm the WDS value of 12.0 for it. Nanson was able to detect B with averted vision while using the 152 mm refractor at 253 x , which suggested the 12.8 magnitude is probably close. The much tighter D was seen at 152 x with averted vision, again suggesting the WDS listed magnitude of 12.0 is about right.

STT 107 (Tau): Nanson detected the B component with averted vision in the 152 mm refractor at 152 x , 190 x , and 253 x , but found it was very tough and somewhat indistinct, which would seem to indicate a fainter magnitude for it than the 10.10 magnitude listed in the WDS. On the same night, C (WDS magnitude of 11.8) was impossible to detect in the glare caused by the primary. However, in a prior observation of STT 107 on 1 -15-2015 during better seeing conditions, Nanson detected both the B and C components with a 127 mm refractor at 295x, which would indicate the WDS values for both stars are about right. Using the 185 mm refractor, Knapp observed B with the aperture reduced to 150 mm , but was unable to detect C , leading to the conclusion both stars are fainter than the WDS listed values.

STT 114 (Tau): Knapp was able to resolve B with the aperture of the 185 mm refractor reduced to 110 mm , leading to the conclusion the WDS magnitude of 10.6 is about right. Nanson had a glimpse of the secondary in the 152 mm refractor at 152 x and consistently detected an elongation of the primary, which seems consistent with the 3.0 " separation and the 2.6 magnitudes of difference between the primary and the secondary.

STT 116 (Tau): Nanson found C was easily seen in the 152 mm refractor at 152 x and appeared similar in magnitude to a comparison star of 12.3 magnitude, suggesting it may be about half a magnitude brighter than the WDS value of 12.90 . The DE pair appeared distinctly elongated at 152 x and was easily split at 253 x , though in the poor seeing it was blurred more often than not. Knapp resolved C and E with the aperture of

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

the 185 mm refractor reduced to 110 mm , and also resolved R at 250 x with the aperture reduced to 150 mm , all of which led to the conclusion that each of the three stars seems to be a bit brighter than the WDS values.

2.3 Photometry and Astrometry Results

Several hundred images taken with iTelescope remote telescopes were, in a first step, plate solved and stacked with AAVSO VPhot. The stacked images were then plate solved with Astrometrica with URAT1 reference stars with Vmags in the range 10.5 to 14.5 mag . The RA/Dec coordinates resulting from plate solving with URAT1 reference stars in the 10.5 to 14.5 mag range were used to calculate Sep and PA using the formula provided by R. Buchheim (2008). Err_PA is the error estimation for PA in degrees calculated as assuming the worst case that Err_Sep points perpendic-

$$
E r r_{-} P A=\arctan \left(\frac{E r r_{-} \text {Sep }}{S e p}\right)
$$

ular to the separation vector. Mag is the photometry result based on UCAC4 reference stars with Vmags between 10.5 and 14.5 mag . Err_Mag is calculated as with dVmag as the average Vmag error over all used

$$
E r r_{-} M a g=\sqrt{d V_{\text {mag }}{ }^{2}+\left[2.5 \log _{10}\left(1+\frac{1}{S N R}\right)\right]^{2}}
$$

reference stars and $S N R$ is the signal to noise ratio for the given star. The results are shown in Table 2.

3. Summary

Tables 3 and 4 below compare the final results of our research with the WDS data that was current at the time we began working on our current group of stars.

In Table 3 the results of our photometry have been averaged for each star. Because we're aware that both the NOMAD-1 and the UCAC4 catalogs are frequently consulted when making WDS evaluations of magnitudes changes, the data from those catalogs has also been included for each of the stars.

Red type has been used in Tables 3 and 4 to call attention to significant differences from the WDS data. With regard to Table 3 those magnitudes that differ by two tenths of a magnitude or more from the WDS values have been highlighted. In Table 4 differences in separation in excess of two-tenths of an arc second are highlighted as are all position angles which differ by more than a degree.

Subsequent to our measures, as a quality check for our astrometry results we turned to the URAT1 catalog for the most recent precise professional measurements
available. We used its coordinates to calculate the Sep and PA for all objects in this report for which URAT1 data was available and compared these values with our results, which are shown in Table 5.

Global Summary

As this report is our last in this sequence of wide STT doubles we take this opportunity for a summary over all eight reports:

1) In total we checked about 100 objects and suggested WDS catalog visual magnitude changes for most of them based on own measurements from images specifically taken for this project.
2) We soon found that for many objects also the astrometry data given in the WDS catalog needed an update so we extended our reports to include RA/ Dec coordinates, separation and position angle with the corresponding error estimations. Some objects also show significant different proper motion for the components demonstrating the need of frequent measurements to keep the catalog values up to date.
3) We also made visual observations for all objects to counter-check visual impression with measurement results and got a mixed bag of often different impressions by different observers and in several cases the visual impressions regarding magnitudes did not match at all the measurement results.

Follow Up

The images we took for this series of reports include besides so far not measured components of the covered STT objects other double stars as well - in these cases we do not suspect any issues with the current WDS catalog data but any double star visited is worth just another recent measurement. We intend to use the available material for another report covering the mentioned additional objects.

Acknowledgements:

The following tools and resources have been used for this research:

- Washington Double Star Catalog as data source for the selected objects
- iTelescope: Images were taken with
* iT24: 610 mm CDK with 3962 mm focal length. CCD: FLI-PL09000. Resolution $0.62 \mathrm{arcsec} /$ pixel. V-filter. Located in Auberry. California. Elevation 1405 m
* iT11: 510 mm CDK with 2280 mm focal length. CCD: FLI ProLine PL11002M. Resolution 0.81 arcsec/pixel. B- and VFilter. Located in Mayhill. New Mexico.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2. Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \text { STT } \\ & 114 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{array}{lc} \hline 05 \quad 41 \\ 40.778 \end{array}$	$\begin{aligned} & 16.14 \\ & 02.37 \end{aligned}$	0.07	0.05	2.997	0.086	281.355	1.644	7.877	0.090	136.87	0.09	2016.093	4	iT18 stack 4x3s. Overlap- ping star disks
B	$\begin{aligned} & 05 \quad 41 \\ & 40.574 \end{aligned}$	$\begin{aligned} & 16.14 \\ & 02.96 \end{aligned}$							9.338	0.092	56.54				
A	$\begin{aligned} & 05 \quad 41 \\ & 40.777 \end{aligned}$	$\begin{aligned} & 16.14 \\ & 02.47 \end{aligned}$	0.08	0.08	2.807	0.113	277.987	2.308	7.862	0.081	106.77	0.08	2016.085	5	iT18 stack 5x3s. Overlap- ping star disks. SNR $B<20$
B	$\begin{aligned} & 05 \quad 41 \\ & 40.584 \end{aligned}$	$\begin{aligned} & 1614 \\ & 02.86 \end{aligned}$							9.679	0.102	16.52				
A	$\begin{aligned} & 05 \quad 41 \\ & 40.777 \end{aligned}$	$\begin{aligned} & 16.14 \\ & 02.42 \end{aligned}$	0.075	0.067	2.900	0.100	279.726	1.984	7.870	0.086			2016.089	9	Overlapping star disks. Both stars too bright for reliable photometry
B	$\begin{aligned} & 0541 \\ & 40.579 \end{aligned}$	$\begin{aligned} & 16 \quad 14 \\ & 02.91 \end{aligned}$							9.509	0.097					
$\begin{gathered} \hline \text { STT } \\ 57 \end{gathered}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
C	$\begin{aligned} & \hline 03 \quad 33 \\ & 26.531 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 03.09 \end{aligned}$	0.07	0.07	9.932	0.099	319.657	0.571	7.510	0.080	230.47	0.08	2016.090	3	iT18 stack $3 \times 3 \mathrm{~s} . \mathrm{C}$ too bright for reliable photometry
D	$\begin{aligned} & 03.33 \\ & 26.064 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 10.66 \end{aligned}$							11.532	0.085	36.08				
C	$\begin{aligned} & 03.33 \\ & 26.533 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 03.12 \end{aligned}$	0.10	0.05	10.003	0.112	319.796	0.640	7.511	0.080	221.06	0.08	2016.085	4	iT18 stack $4 \times 3 \mathrm{~s} . \mathrm{C}$ too bright for reliable photometry
D	$\begin{aligned} & 03 \quad 33 \\ & 26.064 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 10.76 \end{aligned}$							11.545	0.086	33.48				
C	$\begin{aligned} & 03.33 \\ & 26.522 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 03.23 \end{aligned}$	0.04	0.09	9.983	0.098	320.112	0.565	7.513	0.070	175.07	0.07	2016.093	5	iT18 stack $5 \times 3 \mathrm{~s}$. C too bright for reliable photometry
D	$\begin{aligned} & 03.33 \\ & 26.057 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 10.89 \end{aligned}$							11.516	0.081	26.70				
C	$\begin{aligned} & 03 \quad 33 \\ & 26.475 \end{aligned}$	$\begin{aligned} & 23 \quad 23 \\ & 03.32 \end{aligned}$	0.15	0.10	9.727	0.180	321.479	1.062	7.414	0.071	75.45	0.07	2016.023	5	iT27 stack 5×3 s. C too bright for reliable photometry. Component B resolved with 14.566 Vmag (compared with 12.8 mag in WDS)
D	$\begin{array}{ll} 03 & 33 \\ 26.035 \end{array}$	$\begin{aligned} & 23 \quad 23 \\ & 10.93 \end{aligned}$							11.482	0.077	34.65				
C	$\begin{array}{ll} 03 & 33 \\ 26.529 \end{array}$	$\begin{aligned} & 23.23 \\ & 03.03 \end{aligned}$	0.16	0.07	10.033	0.175	319.422	0.997	7.488	0.060	165.74	0.06	2016.026	5	iT27 stack $5 \times 3 \mathrm{~s}$. C too bright for reliable photometry. Component B resolved with 14.659 Vmag (compared with 12.8 mag in WDS)
D	$\begin{aligned} & 03.33 \\ & 26.055 \end{aligned}$	$\begin{aligned} & 23 \quad 23 \\ & 10.65 \end{aligned}$							11.552	0.061	85.67				
C	$\begin{aligned} & 03.33 \\ & 26.518 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 03.16 \end{aligned}$	0.114	0.078	9.935	0.138	320.086	0.795	7.487	0.073			2016.064	22	C too bright for reliable photometry
D	$\begin{aligned} & 03.33 \\ & 26.055 \end{aligned}$	$\begin{aligned} & 23.23 \\ & 10.78 \end{aligned}$							11.525	0.078					

Table 2 continues on the next page.

STT Doubles with Large $\Delta \mathrm{M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \text { STT } \\ & 107 \end{aligned}$	RA	Dec	dRA	dDec	Sep	$\begin{aligned} & \text { Err } \\ & \text { Sep } \end{aligned}$	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 05 \quad 27 \\ & 10.104 \\ & \hline \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.70 \\ & \hline \end{aligned}$	0.07	0.08	10.176	0.106	305.854	0.599	5.336	0.060	511.81	0.06	2016.090	4	iT18 stack $4 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 05 \quad 27 \\ & 09.526 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.66 \end{aligned}$							11.066	0.066	40.18				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.105 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.72 \end{aligned}$	0.07	0.09	10.152	0.114	305.809	0.643	5.362	0.090	435.83	0.09	2016.093	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 05 \quad 27 \\ & 09.528 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.66 \end{aligned}$							11.164	0.099	26.60				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.109 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.70 \end{aligned}$	0.06	0.07	10.193	0.092	305.852	0.518	5.340	0.080	502.15	0.08	2016.085	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 05 \quad 27 \\ & 09.530 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.67 \end{aligned}$							11.098	0.086	34.59				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.089 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 44.26 \end{aligned}$	0.11	0.12	9.837	0.163	303.784	0.948	6.059	0.092	53.70	0.09	2016.023	4	iT27 stack 4×3 s. A too bright for reliable photometry
B	$\begin{aligned} & 05.27 \\ & 09.516 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.73 \end{aligned}$							11.099	0.094	39.73				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.088 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 44.05 \end{aligned}$	0.11	0.12	10.053	0.163	305.444	0.928	6.380	0.061	111.35	0.06	2016.026	4	iT27 stack 4×3 s. A too bright for reliable photometry
B	$\begin{aligned} & 05 \quad 27 \\ & 09.514 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.88 \end{aligned}$							11.100	0.062	65.33				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.099 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.89 \end{aligned}$	0.08	$\begin{aligned} & 0.09 \\ & 8 \end{aligned}$	10.081	0.131	305.359	0.744	5.695	0.078			2016.064	22	A too bright for reliable photometry
B	$\begin{aligned} & 05 \quad 27 \\ & 09.523 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 49.72 \end{aligned}$							11.105	0.083					
$\begin{aligned} & \text { STT } \\ & 107 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 05 \quad 27 \\ & 10.104 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.70 \end{aligned}$	0.07	0.08	9.939	0.106	346.889	0.613	5.336	0.060	511.81	0.06	2016.090	4	iT18 stack $4 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR C<20
C	$\begin{aligned} & 05 \quad 27 \\ & 09.946 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 53.38 \end{aligned}$							12.604	0.102	12.63				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.105 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.72 \end{aligned}$	0.07	0.09	10.092	0.114	346.675	0.647	5.362	0.090	435.83	0.09	2016.093	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR C<10
C	$\begin{aligned} & 05 \quad 27 \\ & 09.942 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 53.54 \end{aligned}$							12.845	0.138	9.95				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.109 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 43.70 \end{aligned}$	0.06	0.07	10.030	0.092	346.927	0.527	5.340	0.080	502.15	0.08	2016.085	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. SNR C<10
C	$\begin{aligned} & 05 \quad 27 \\ & 09.950 \end{aligned}$	$\begin{aligned} & 17.57 \\ & 53.47 \end{aligned}$							12.765	0.143	8.68				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.089 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 44.26 \end{aligned}$	0.11	0.12	9.442	0.163	346.721	0.988	6.059	0.092	53.70	0.09	2016.023	4	iT27 stack 4×3 s. A too bright for reliable photometry. SNR C<20
C	$\begin{array}{ll} 05 \quad 27 \\ 09.937 \end{array}$	$\begin{aligned} & 17 \quad 57 \\ & 53.45 \end{aligned}$							12.738	0.128	11.39				
A	$\begin{array}{ll} 05 \quad 27 \\ 10.088 \end{array}$	$\begin{aligned} & 17 \quad 57 \\ & 44.05 \end{aligned}$	0.11	0.12	9.570	0.163	346.110	0.975	6.380	0.061	111.35	0.06	2016.026	4	iT27 stack 4×3 s. A too bright for reliable photometry. SNR C<20
C	$\begin{aligned} & 05 \quad 27 \\ & 09.927 \end{aligned}$	$\begin{aligned} & 17 \quad 57 \\ & 53.34 \end{aligned}$							13.077	0.118	10.20				
A	$\begin{aligned} & 05 \quad 27 \\ & 10.099 \end{aligned}$	$\begin{aligned} & 17.57 \\ & 43.89 \end{aligned}$	0.087	0.098	9.814	0.131	346.669	0.765	5.695	0.078			2016.064	22	A too bright for reliable photometry. SNR C<20
C	$\begin{aligned} & 0527 \\ & 09.940 \end{aligned}$	$\begin{aligned} & 1757 \\ & 53.44 \end{aligned}$							12.806	0.127					

Table 2 continues on the next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \mathrm{STT} \\ & 116 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 05.45 \\ & 55.397 \end{aligned}$	$\begin{aligned} & 25 \quad 54 \\ & 49.25 \end{aligned}$	0.08	0.07	17.783	0.106	64.735	0.342	7.237	0.090	269.89	0.09	2016.090	4	iT18 stack 4x3s: A too bright for reliable photometry. Component R measured with 12.814 Vmag with SNR 20.47
C	$\begin{aligned} & 05.45 \\ & 56.589 \end{aligned}$	$\begin{aligned} & 25.54 \\ & 56.84 \end{aligned}$							11.675	0.095	36.33				
A	$\begin{aligned} & 05.45 \\ & 55.400 \end{aligned}$	$\begin{aligned} & 25 \quad 54 \\ & 49.24 \end{aligned}$	0.06	0.06	17.787	0.085	64.812	0.273	7.244	0.070	281.94	0.07	2016.085	5	iT18 stack $5 \times 3 \mathrm{~s}: ~ A ~ t o o ~$ bright for reliable photometry. Component R measured with 12.948 Vmag with SNR 19.65
C	$\begin{aligned} & 05.45 \\ & 56.593 \end{aligned}$	$\begin{aligned} & 25.54 \\ & 56.81 \end{aligned}$							11.679	0.076	37.07				
A	$\begin{array}{ll} 05 & 45 \\ 55.399 \end{array}$	$\begin{aligned} & 25 \quad 54 \\ & 49.26 \end{aligned}$	0.08	0.08	17.772	0.113	64.504	0.365	7.249	0.080	172.94	0.08	2016.093	5	iT18 stack $5 x 3 s:$ A too bright for reliable photometry. Component R meas ured with 13.089 Vmag with SNR 8.68
C	$\begin{array}{ll} 05 & 45 \\ 56.588 \end{array}$	$\begin{aligned} & 25 \quad 54 \\ & 56.91 \end{aligned}$							11.661	0.095	20.52				
A	$\begin{aligned} & 05.45 \\ & 55.399 \end{aligned}$	$\begin{aligned} & 25 \quad 54 \\ & 49.25 \end{aligned}$	0.074	0.070	17.781	0.102	64.684	0.329	$\begin{aligned} & 7.2433 \\ & 333 \end{aligned}$	0.081			2016.089	14	A too bright for reliable photometry. Component R measured with averaged 12.950 Vmag
C	$\begin{aligned} & 05.45 \\ & 56.590 \end{aligned}$	$\begin{aligned} & 25.54 \\ & 56.85 \end{aligned}$							$\begin{aligned} & 11.671 \\ & 667 \end{aligned}$	0.089					
$\begin{gathered} \text { STT } \\ 76 \end{gathered}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{array}{ll} 04 & 16 \\ 10.639 \end{array}$	$\begin{aligned} & 34 \quad 52 \\ & 07.29 \end{aligned}$	0.03	0.03	3.550	0.042	211.099	0.685	7.501	0.030	354.56	0.03	2016.236	5	iT24 stack 5x3s. A too bright for reliable photometry. Overlapping star disks. SNR B<20
B	$\begin{aligned} & 04 \quad 16 \\ & 10.490 \end{aligned}$	$\begin{aligned} & 3452 \\ & 04.25 \end{aligned}$							12.489	0.079	14.34				
A	$\begin{aligned} & 04 \quad 16 \\ & 10.639 \end{aligned}$	$\begin{aligned} & 34.52 \\ & 07.29 \end{aligned}$	0.030	0.030	3.550	0.042	211.099	0.685	7.501	0.030			2016.236	5	A too bright for reliable photometry. Overlapping star disks. SNR B<20
B	$\begin{aligned} & 04.16 \\ & 10.490 \end{aligned}$	$\begin{aligned} & 3452 \\ & 04.25 \end{aligned}$							12.489	0.079					
$\begin{gathered} \hline \text { STT } \\ 48 \end{gathered}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 0253 \\ & 21.068 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 11.82 \end{aligned}$	0.16	0.12	6.526	0.200	316.327	1.755	6.167	0.100	194.65	0.10	2016.172	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. Overlapping star disks. SNR B <20
B	$\begin{aligned} & 0253 \\ & 20.614 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 16.54 \end{aligned}$							11.498	0.118	16.73				
A	$\begin{aligned} & 0253 \\ & 21.070 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 11.73 \end{aligned}$	0.10	0.10	6.609	0.141	317.597	1.226	6.165	0.080	395.94	0.08	2016.258	5	iT24 stack 5x3s. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 02.53 \\ & 20.621 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 16.61 \end{aligned}$							11.357	0.094	21.93				
A	$\begin{aligned} & 0253 \\ & 21.069 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 11.78 \end{aligned}$	0.133	0.110	6.567	0.173	316.966	1.511	6.166	0.091			2016.215	10	A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 0253 \\ & 20.618 \end{aligned}$	$\begin{aligned} & 48 \quad 34 \\ & 16.58 \end{aligned}$							11.428	0.107					

Table 2 continues on the next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{gathered} \hline \text { STT } \\ 63 \end{gathered}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{array}{ll} 03 & 48 \\ 18.072 \end{array}$	$\begin{aligned} & 5044 \\ & 12.50 \end{aligned}$	0.11	0.10	6.324	0.149	271.359	1.347	6.100	0.070	349.80	0.07	2016.172	4	iT18 stack $4 \times 3 \mathrm{~s}$. A too bright for reliable photometry. Overlapping star disks. SNR B <10
B	$\begin{aligned} & 0348 \\ & 17.406 \end{aligned}$	$\begin{aligned} & 50 \quad 44 \\ & 12.65 \end{aligned}$							11.573	0.137	8.69				
A	$\begin{array}{ll} 03 & 48 \\ 18.067 \end{array}$	$\begin{aligned} & 50 \quad 44 \\ & 12.35 \end{aligned}$	0.12	0.11	6.894	0.163	268.753	1.353	6.225	0.100	303.25	0.10	2016.255	1	iT24 1x3s. A too bright for reliable photometry. Overlapping star disks. SNR B <20
B	$\begin{aligned} & 03 \quad 48 \\ & 17.341 \end{aligned}$	$\begin{aligned} & 50 \quad 44 \\ & 12.20 \end{aligned}$							11.438	0.116	18.24				
A	$\begin{array}{ll} 03 & 48 \\ 18.068 \end{array}$	$\begin{aligned} & 50 \quad 44 \\ & 12.18 \end{aligned}$	0.09	0.08	6.959	0.120	270.494	0.991	6.212	0.090	348.90	0.09	2016.258	5	iT24 stack 5x1s. A too bright for reliable photometry. Overlapping star disks
B	$\begin{array}{ll} 03 & 48 \\ 17.335 \end{array}$	$\begin{aligned} & 50 \quad 44 \\ & 12.24 \end{aligned}$							11.190	0.093	42.48				
A	$\begin{array}{ll} 03 & 48 \\ 18.025 \end{array}$	$\begin{aligned} & 50 \quad 44 \\ & 12.61 \end{aligned}$	0.04	0.04	6.644	0.057	267.153	0.488	7.021	0.050	187.41	0.05	2016.236	5	iT24 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 03.48 \\ & 17.326 \end{aligned}$	$\begin{aligned} & 5044 \\ & 12.28 \end{aligned}$							11.314	0.053	59.40				
A	$\begin{aligned} & 03.48 \\ & 18.058 \end{aligned}$	$\begin{aligned} & 50 \quad 44 \\ & 12.41 \end{aligned}$	0.095	0.087	6.703	0.129	269.423	1.100	6.390	0.080			2016.230	15	A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 03.48 \\ & 17.352 \end{aligned}$	$\begin{aligned} & 5044 \\ & 12.34 \end{aligned}$							11.379	0.105					
$\begin{aligned} & \hline \text { STT } \\ & 518 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A															
B															of the images taken
$\begin{aligned} & \hline \text { STT } \\ & 517 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
AB	$\begin{array}{ll} 05 & 13 \\ 31.509 \end{array}$	$\begin{aligned} & 01.58 \\ & 03.43 \end{aligned}$	0.12	0.11	7.110	0.163	132.795	1.312	6.388	0.100	153.04	0.10	2016.026	5	iT27 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks. SNR B <20
C	$\begin{array}{ll} 05 & 13 \\ 31.857 \end{array}$	$\begin{aligned} & 01.57 \\ & 58.60 \end{aligned}$							11.522	0.115	18.87				
AB	$\begin{array}{ll} 05 & 13 \\ 31.527 \end{array}$	$\begin{aligned} & 0158 \\ & 03.67 \end{aligned}$	0.12	0.12	7.362	0.170	135.044	1.320	6.483	0.080	162.27	0.08	2016.032	5	iT27 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks
C	$\begin{array}{ll} 05 & 13 \\ 31.874 \end{array}$	$\begin{aligned} & 01.57 \\ & 58.46 \end{aligned}$							11.457	0.091	24.16				
AB	$\begin{array}{ll} 05 & 13 \\ 31.545 \end{array}$	$\begin{array}{ll} 01 & 58 \\ 03.73 \end{array}$	0.12	0.12	7.017	0.170	137.702	1.385	6.313	0.081	111.63	0.08	2016.035	5	iT27 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks. SNR B <20
C	$\begin{array}{ll} 05 & 13 \\ 31.860 \end{array}$	$\begin{aligned} & 0157 \\ & 58.54 \end{aligned}$							11.448	0.105	15.55				
AB	$\begin{array}{ll} 05 & 13 \\ 31.550 \end{array}$	$\begin{aligned} & 0158 \\ & 03.51 \end{aligned}$	0.10	0.08	6.727	0.128	135.770	1.091	6.143	0.090	161.50	0.09	2016.031	4	iT24 stack 4×3 s. A too bright for reliable photometry. Overlapping star disks. SNR B <20
C	$\begin{array}{ll} 05 & 13 \\ 31.863 \end{array}$	$\begin{aligned} & 0157 \\ & 58.69 \end{aligned}$							11.519	0.117	13.91				
AB	$\begin{aligned} & 05.13 \\ & 31.533 \end{aligned}$	$\begin{aligned} & 0158 \\ & 03.59 \end{aligned}$	0.115	0.109	7.051	0.159	135.311	1.288	6.332	0.088			2016.031	19	A too bright for reliable photometry. Overlapping star disks. SNR B <20
C	$\begin{aligned} & 05 \quad 13 \\ & 31.863 \end{aligned}$	$\begin{aligned} & 0157 \\ & 58.57 \end{aligned}$							11.487	0.108					

Table 2 continues on the next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \text { STT } \\ & 136 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 06.28 \\ & 14.458 \end{aligned}$	$\begin{aligned} & \hline 70 \quad 32 \\ & 07.41 \end{aligned}$	0.12	0.14	5.373	0.184	80.789	1.966	5.811	0.130	218.05	0.13	2016.194	2	iT18 stack $2 \times 3 \mathrm{~s}$. SNR B<20. A too bright for reliable photometry
B	$\begin{aligned} & 0628 \\ & 15.519 \end{aligned}$	$\begin{array}{ll} 70 \quad 32 \\ 08.27 \end{array}$							10.806	0.152	13.26				
A	$\begin{aligned} & 0628 \\ & 14.545 \end{aligned}$	$\begin{array}{ll} 70 \quad 32 \\ 07.41 \end{array}$	0.08	0.08	5.334	0.113	83.865	1.215	6.016	0.080	402.55	0.08	2016.258	4	iT24 stack $4 \times 1 s . \operatorname{SNR} B<20$. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 06 \quad 28 \\ & 15.606 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 07.98 \end{aligned}$							10.616	0.097	19.30				
A	$\begin{aligned} & 0628 \\ & 14.490 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 07.25 \end{aligned}$	0.06	0.07	5.466	0.092	81.689	0.966	5.970	0.070	517.69	0.07	2016.236	5	iT24 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 06 \quad 28 \\ & 15.572 \end{aligned}$	$\begin{array}{ll} 70 & 32 \\ 08.04 \end{array}$							10.757	0.087	20.78				
A	$\begin{aligned} & 0628 \\ & 14.452 \end{aligned}$	$\begin{array}{ll} 70 \quad 32 \\ 07.28 \end{array}$	0.10	0.08	5.593	0.128	83.120	1.312	5.828	0.080	168.06	0.08	2016.247	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 0628 \\ & 15.563 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 07.95 \end{aligned}$							10.315	0.085	37.58				
A	$\begin{aligned} & 0628 \\ & 14.475 \end{aligned}$	$\begin{array}{ll} 70 \quad 32 \\ 07.50 \end{array}$	0.14	0.11	5.504	0.178	85.624	1.853	5.899	0.080	183.76	0.08	2016.247	5	iT24 stack 5×3 s. A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 0628 \\ & 15.573 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 07.92 \end{aligned}$							10.334	0.084	39.76				
A	$\begin{aligned} & 0628 \\ & 14.484 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 07.37 \end{aligned}$	0.104	0.099	5.452	0.144	83.025	1.511	5.905	0.091			2016.237		A too bright for reliable photometry. Overlapping star disks
B	$\begin{aligned} & 0628 \\ & 15.567 \end{aligned}$	$\begin{aligned} & 70 \quad 32 \\ & 08.03 \end{aligned}$							10.566	0.104					
$\begin{aligned} & \hline \text { STT } \\ & 163 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
AB	$\begin{aligned} & \hline 07 \quad 01 \\ & 09.858 \end{aligned}$	$\begin{array}{ll} 11.46 \\ 28.35 \end{array}$	0.09	0.06	14.235	0.108	165.970	0.435	6.707	0.080	334.27	0.08	2016.194	4	iT18 stack $4 \times 3 \mathrm{~s}$. AB too bright for reliable photometry
C	$\begin{aligned} & 07 \quad 01 \\ & 10.093 \end{aligned}$	$\begin{aligned} & 1146 \\ & 14.54 \end{aligned}$							11.767	0.086	33.50				
AB	$\begin{aligned} & 07 \quad 01 \\ & 09.824 \end{aligned}$	$\begin{aligned} & 1146 \\ & 28.40 \end{aligned}$	0.04	0.04	14.436	0.057	164.483	0.225	7.020	0.040	318.94	0.04	2016.236	5	iT24 stack $5 x 3 s$. AB too bright for reliable photometry
C	$\begin{array}{ll} 07 \quad 01 \\ 10.087 \end{array}$	$\begin{aligned} & 11.46 \\ & 14.49 \end{aligned}$							11.778	0.041	111.68				
AB	$\begin{aligned} & 07 \quad 01 \\ & 09.855 \end{aligned}$	$\begin{aligned} & 11.46 \\ & 28.11 \end{aligned}$	0.11	0.11	13.885	0.156	165.296	0.642	6.718	0.061	133.17	0.06	2016.247	5	iT24 stack $5 \times 3 \mathrm{~s}$. AB too bright for reliable photometry
C	$\begin{aligned} & 07 \quad 01 \\ & 10.095 \end{aligned}$	$\begin{aligned} & 11.46 \\ & 14.68 \end{aligned}$							11.721	0.061	91.17				
AB	$\begin{aligned} & 07 \quad 01 \\ & 09.829 \end{aligned}$	$\begin{aligned} & 1146 \\ & 28.25 \end{aligned}$	0.11	0.11	14.268	0.156	164.357	0.625	6.721	0.050	153.43	0.05	2016.247	5	iT24 stack $5 x 3 s$. AB too bright for reliable photometry
C	$\begin{aligned} & 07 \quad 01 \\ & 10.091 \end{aligned}$	$\begin{aligned} & 11.46 \\ & 14.51 \end{aligned}$							11.733	0.052	78.84				
AB	$\begin{aligned} & 07 \quad 01 \\ & 09.848 \end{aligned}$	$\begin{aligned} & 11.46 \\ & 28.36 \end{aligned}$	0.09	0.10	14.216	0.135	165.769	0.542	6.793	0.060	307.52	0.06	2016.258	5	iT24 stack 5×3 s. AB too bright for reliable photometry
C	$\begin{aligned} & 07 \quad 01 \\ & 10.086 \end{aligned}$	$\begin{aligned} & 11.46 \\ & 14.58 \end{aligned}$							11.788	0.061	90.92				
AB	$\begin{aligned} & 0701 \\ & 09.843 \end{aligned}$	$\begin{aligned} & 1146 \\ & 28.29 \end{aligned}$	0.092	0.089	14.207	0.128	165.172	0.515	6.792	0.060			2016.237		AB too bright for reliable photometry
C	$\begin{aligned} & 07 \quad 01 \\ & 10.090 \end{aligned}$	$\begin{aligned} & 1146 \\ & 14.56 \\ & \hline \end{aligned}$							11.757	0.062					

Table 2 continues on the next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2 (continued). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \text { STT } \\ & 198 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{array}{ll} \hline 0916 \\ 11.137 \end{array}$	$\begin{aligned} & 23.24 \\ & 08.77 \end{aligned}$	0.04	0.06	14.994	0.072	115.141	0.276	7.632	0.080	241.96	0.08	2016.194	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 09.16 \\ & 12.123 \end{aligned}$	$\begin{aligned} & 23.24 \\ & 02.40 \end{aligned}$							12.864	0.095	20.71				
A	$\begin{aligned} & 0916 \\ & 11.143 \end{aligned}$	$\begin{aligned} & 23.24 \\ & 08.97 \end{aligned}$	0.08	0.09	15.019	0.120	115.348	0.459	7.623	0.041	147.39	0.04	2016.247	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & \hline 0916 \\ & 12.129 \end{aligned}$	$\begin{aligned} & 23 \quad 24 \\ & 02.54 \end{aligned}$							12.980	0.045	51.04				
A	$\begin{aligned} & 0916 \\ & 11.146 \end{aligned}$	$\begin{aligned} & 23.24 \\ & 08.76 \end{aligned}$	0.05	0.05	14.944	0.071	115.104	0.271	7.664	0.060	168.26	0.06	2016.258	4	iT24 stack 4×3 s. A too bright for reliable photometry
B	$\begin{aligned} & 09.16 \\ & 12.129 \end{aligned}$	$\begin{aligned} & 23 \quad 24 \\ & 02.42 \end{aligned}$							13.019	0.063	52.52				
A	$\begin{aligned} & 09 \quad 16 \\ & 11.137 \end{aligned}$	$\begin{aligned} & 23 \quad 24 \\ & 08.83 \end{aligned}$	0.03	0.03	15.077	0.042	115.202	0.161	7.666	0.040	452.98	0.04	2016.236	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 09.16 \\ & 12.128 \end{aligned}$	$\begin{aligned} & 23 \quad 24 \\ & 02.41 \end{aligned}$							12.977	0.043	71.78				
A	$\begin{aligned} & 0916 \\ & 11.141 \end{aligned}$	$\begin{aligned} & 23.24 \\ & 08.83 \end{aligned}$	0.053	0.061	15.008	0.081	115.199	0.311	7.646	0.058			2016.234	19	A too bright for reliable photometry
B	$\begin{aligned} & 0916 \\ & 12.127 \end{aligned}$	$\begin{aligned} & 23.24 \\ & 02.44 \end{aligned}$							12.960	0.065					
$\begin{aligned} & \hline \text { STT } \\ & 488 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{aligned} & 23.07 \\ & 25.489 \end{aligned}$	$\begin{array}{ll} \hline 20 \quad 34 \\ 53.50 \end{array}$	0.13	0.13	14.888	0.184	334.704	0.708	6.706	0.110	498.01	0.11	2015.637	4	iT11 stack $4 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & 23.07 \\ & 25.036 \end{aligned}$	$\begin{aligned} & 20 \quad 35 \\ & 06.96 \end{aligned}$							11.976	0.112	48.39				
A	$\begin{array}{ll} 23 & 07 \\ 25.482 \end{array}$	$\begin{aligned} & 20 \quad 34 \\ & 53.35 \end{aligned}$	0.04	0.06	14.897	0.072	334.900	0.277	6.649	0.060	363.13	0.06	2015.639	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.032 \end{array}$	$\begin{aligned} & 20 \quad 35 \\ & 06.84 \end{aligned}$							11.958	0.068	34.23				
A	$\begin{aligned} & 23.07 \\ & 25.482 \end{aligned}$	$\begin{aligned} & 20 \quad 34 \\ & 53.15 \end{aligned}$	0.07	0.08	14.954	0.106	334.884	0.407	6.406	0.110	506.90	0.11	2015.700	5	iT21 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.030 \end{array}$	$\begin{aligned} & 20 \quad 35 \\ & 06.69 \end{aligned}$							11.898	0.112	47.27				
A	$\begin{aligned} & 23.07 \\ & 25.482 \end{aligned}$	$\begin{aligned} & 20 \quad 34 \\ & 53.32 \end{aligned}$	0.02	0.04	14.909	0.045	334.802	0.172	6.695	0.050	412.76	0.05	2015.615	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.030 \end{array}$	$\begin{aligned} & 20 \quad 35 \\ & 06.81 \end{aligned}$							11.964	0.052	78.81				
A	$\begin{aligned} & 23.07 \\ & 25.484 \end{aligned}$	$\begin{aligned} & 20 \quad 34 \\ & 53.42 \end{aligned}$	0.03	0.05	14.782	0.058	334.571	0.226	6.684	0.060	388.37	0.06	2015.620	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.032 \end{array}$	$\begin{aligned} & 20 \quad 35 \\ & 06.77 \end{aligned}$							11.950	0.062	76.69				
A	$\begin{aligned} & 23.07 \\ & 25.480 \end{aligned}$	$\begin{array}{ll} 20 \quad 34 \\ 53.33 \end{array}$	0.06	0.04	14.858	0.072	334.949	0.278	6.627	0.090	401.71	0.09	2015.632	5	iT24 stack $5 x 3 s$. A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.032 \end{array}$	$\begin{aligned} & 20 \quad 35 \\ & 06.79 \end{aligned}$							11.903	0.091	74.40				
A	$\begin{aligned} & 23.07 \\ & 25.483 \end{aligned}$	$\begin{aligned} & 2034 \\ & 53.345 \end{aligned}$	0.069	0.074	14.881	0.101	334.802	0.388	6.628	0.084			2015.640	29	A too bright for reliable photometry
B	$\begin{array}{ll} 23 & 07 \\ 25.032 \end{array}$	$\begin{aligned} & 2035 \\ & 06.810 \end{aligned}$							11.942	0.086					

Table 2 concludes on the next page.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 2. (conclusion). Photometry and astrometry results for the selected STT objects. Date is the Bessel epoch and N is the number of images used for the reported values. iT in the Notes column indicates the telescope used with number of images and exposure time given (Specifications of the used telescopes: See Acknowledgements). The average results over all used images are given in the line below the individual stacks in bold. The error estimation over all used images is calculated as root mean square over the individual Err values. The N column in the summary line gives the total number of images used and Date the average Bessel epoch.

$\begin{aligned} & \hline \text { STT } \\ & 467 \end{aligned}$	RA	Dec	dRA	dDec	Sep	Err Sep	PA	Err PA	Mag	Err Mag	SNR	dVmag	Date	N	Notes
A	$\begin{array}{ll} \hline 22 \quad 14 \\ 48.588 \end{array}$	$\begin{aligned} & \hline 2231 \\ & 24.42 \end{aligned}$	0.13	0.16	23.011	0.206	273.289	0.513	6.654	0.090	492.60	0.09	2015.637	5	iT11 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & \hline 2214 \\ & 46.930 \\ & \hline \end{aligned}$	$\begin{aligned} & 2231 \\ & 25.74 \\ & \hline \end{aligned}$							11.083	0.091	79.18				
A	$\begin{array}{ll} 22 \quad 14 \\ 48.580 \end{array}$	$\begin{aligned} & 2231 \\ & 24.19 \end{aligned}$	0.19	0.07	23.051	0.202	273.233	0.503	6.626	0.070	328.88	0.07	2015.639	5	iT18 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} \hline 22 \quad 14 \\ 46.919 \end{array}$	$\begin{aligned} & 2231 \\ & 25.49 \end{aligned}$							11.012	0.073	55.25				
A	$\begin{aligned} & 2214 \\ & 48.576 \end{aligned}$	$\begin{aligned} & 2231 \\ & 24.01 \end{aligned}$	0.08	0.12	22.986	0.144	273.417	0.359	6.394	0.110	509.10	0.11	2015.700	5	iT21 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} \hline 22 & 14 \\ 46.920 \end{array}$	$\begin{aligned} & 2231 \\ & 25.38 \end{aligned}$							10.901	0.111	84.98				
A	$\begin{array}{ll} \hline 22 \quad 14 \\ 48.579 \end{array}$	$\begin{aligned} & 2231 \\ & 24.14 \end{aligned}$	0.03	0.03	23.025	0.042	273.311	0.106	6.708	0.040	441.06	0.04	2015.615	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{aligned} & \hline 2214 \\ & 46.920 \\ & \hline \end{aligned}$	$\begin{aligned} & 2231 \\ & 25.47 \end{aligned}$							11.038	0.041	120.59				
A	$\begin{aligned} & 22 \quad 14 \\ & 48.579 \end{aligned}$	$\begin{aligned} & 2231 \\ & 24.43 \end{aligned}$	0.02	0.02	23.039	0.028	272.662	0.070	6.852	0.030	509.59	0.03	2015.620	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} \hline 22 & 14 \\ 46.918 \end{array}$	$\begin{aligned} & 2231 \\ & 25.50 \end{aligned}$							11.036	0.031	134.65				
A	$\begin{array}{ll} \hline 22 \quad 14 \\ 48.578 \end{array}$	$\begin{aligned} & 2231 \\ & 24.17 \end{aligned}$	0.03	0.02	23.025	0.036	273.287	0.090	6.747	0.040	444.94	0.04	2015.632	5	iT24 stack $5 \times 3 \mathrm{~s}$. A too bright for reliable photometry
B	$\begin{array}{ll} \hline 22 \quad 14 \\ 46.919 \end{array}$	$\begin{aligned} & 22.31 \\ & 25.49 \end{aligned}$							11.024	0.041	123.19				
A	$\begin{aligned} & \hline 2214 \\ & 48.580 \end{aligned}$	$\begin{aligned} & 2231 \\ & 24.227 \end{aligned}$	0.101	0.088	23.023	0.134	273.200	0.334	6.664	0.070			2015.640	30	A too bright for reliable photometry
B	$\begin{aligned} & \hline 22 \quad 14 \\ & 46.921 \end{aligned}$	$\begin{aligned} & \hline 2231 \\ & 25.512 \end{aligned}$							11.016	0.071					

Table 3. Photometry and Visual Results Compared to WDS

	$\begin{aligned} & \text { WDS } \\ & \text { Mag } \end{aligned}$	$\begin{aligned} & \text { NOMAD-1 } \\ & \text { vMag } \end{aligned}$	UCAC4 VMag	UCAC4 f. mag	Average of Photometry Measures	Results of Visual Observations
STT 114 B	10.6	-	-	-	9.509	Two observations suggesting the wDS value of 10.6 for B is about right.
STT 57 D	12.0	-	-	-	11.525	Two observations suggesting the wDS value of 12.0 for D is about right.
STT 107 B	10.1	-	-	-	11.105	Three observations of B suggesting it's fainter than the WDS value of 10.1 .
STT 107 C	11.8	-	-	-	12.806	One observation suggesting C is fainter than the WDS value of 11.8, one suggesting it's close to the WDS value.
STT 116 C	12.9	-	-	11.684	11.672	Two observations suggesting C is about half a magnitude brighter than the WDS value of 12.9 .
STT 76 B	12.4	-	-	-	12.489	No observations made of this pair.
STT 48 B	10.6	-	10.548	-	11.428	One inconclusive observation.
STT 63 B	11.2	-	-	-	11.379	One inconclusive observation.
STT 518 B	12.8	-	-	-	Not Resolved	One observation suggesting the magnitude of B lies somewhere between the WDS value of 12.8 and a bit brighter than that value.
STT 517 C	13.0	-	-	-	11.487	Two observations suggesting C is brighter than the wDS value of 13.0 .
STT 136 B	11.0	-	10.506	-	10.566	One inconclusive observation and one suggesting C is much fainter than the WDS value of 11.0 .
STT 163 C	12.0	-	-	11.366	11.757	Two observations suggesting the WDS value of 12.0 for C is reasonably close.
STT 198 B	12.0	-	-	12.872	12.960	Two observations suggesting B is notably fainter than the wDS value of 12.0 .
STT 488 B	10.4	-	-	12.022	11.942	One observation suggesting B is distinctly fainter than the wDS value of 10.4 .
STT 467 B	10.7	11.5	-	10.969	11.016	One observation suggesting a value for B in the 12.2 to 12.3 range.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

Table 4. Astrometry Results Compared to WDS

	WDS Coordinates	WDS Sep	WDS PA	Astrometry Coordinates	Astrometry Sep	Astrometry PA
STT 114 AB	$\begin{aligned} & 05: 41: 40.770 \\ & +16: 14: 02.4 \end{aligned}$	3.0	278	$\begin{array}{r} 054140.777 \\ +161402.42 \end{array}$	2.9	279.726
STT 57 CD	$\begin{aligned} & 03: 33: 26.530 \\ & +23: 23: 03.5 \end{aligned}$	9.9	320	$\begin{aligned} & 03 \quad 33 \quad 26.518 \\ & +23 \quad 23 \quad 03.16 \end{aligned}$	9.935	320.086
STT 107 AB	$\begin{aligned} & 05: 27: 10.090 \\ & +17: 57: 44.0 \end{aligned}$	10.0	306	$\begin{array}{r} 052710.099 \\ +175743.89 \\ \hline \end{array}$	10.081	305.359
STT 107 AC	$\begin{aligned} & 05: 27: 10.090 \\ & +17: 57: 44.0 \end{aligned}$	10.0	347	$\begin{array}{r} 052710.099 \\ +17 \quad 5743.89 \end{array}$	9.814	346.669
STT 116 AC	$\begin{aligned} & 05: 45: 55.390 \\ & +25: 54: 49.3 \end{aligned}$	17.9	65	$\begin{array}{r} 054555.399 \\ +25 \quad 54 \quad 49.25 \end{array}$	17.781	64.684
STT 76 AB	$\begin{aligned} & 04: 16: 10.609 \\ & +34: 52: 07.7 \end{aligned}$	3.8	210	$\begin{array}{r} 041610.639 \\ +345207.29 \end{array}$	3.550	211.099
STT 48 AB	$\begin{aligned} & 02: 53: 21.070 \\ & +48: 34: 11.9 \end{aligned}$	6.6	318	$\begin{array}{r} 025321.069 \\ +48 \quad 34 \quad 11.78 \end{array}$	6.567	316.966
STT 63 AB	$\begin{aligned} & 03: 48: 18.080 \\ & +50: 44: 12.4 \end{aligned}$	6.8	270	$\begin{array}{r} 0348 \\ +5044 \\ +50.058 \end{array}$	6.703	269.423
STT 517 AB, C	$\begin{aligned} & 05: 13: 31.550 \\ & +01: 58: 03.7 \end{aligned}$	6.5	138	$\begin{array}{r} 0513 \\ +01 \quad 58 \quad 03.593 \end{array}$	7.051	135.311
STT 136 AB	$\begin{aligned} & 06: 28: 14.490 \\ & +70: 32: 07.0 \end{aligned}$	5.0	82	$\begin{array}{r} 06 \quad 28 \quad 14.484 \\ +70 \quad 32 \quad 07.37 \end{array}$	5.452	83.025
STT 163 AB, C	$\begin{aligned} & 07: 01: 09.851 \\ & +11: 46: 28.7 \end{aligned}$	14.5	165	$\begin{array}{r} 070109.843 \\ +1146 \end{array}$	14.207	165.172
STT 198 AB	$\begin{aligned} & 09: 16: 11.281 \\ & +23: 24: 10.4 \end{aligned}$	14.6	121	$\begin{array}{r} 091611.141 \\ +23 \quad 24 \quad 08.83 \end{array}$	15.008	115.199
STT 488 AB	$\begin{aligned} & 23: 07: 25.502 \\ & +20: 34: 53.802 \end{aligned}$	14.6	335	$\begin{aligned} & 23 \quad 07 \quad 25.483 \\ & +20 \quad 34 \quad 53.345 \end{aligned}$	14.881	334.802
STT 467 AB	$\begin{aligned} & 22: 14: 48.567 \\ & +22: 31: 24.299 \\ & \hline \end{aligned}$	23.9	274	$\begin{aligned} & 221448.580 \\ & +2231 \quad 24.227 \\ & \hline \end{aligned}$	23.023	273.200

Table 5 Astrometry Results Compared with URAT1 Coordinates

Object	URAT1 Sep	iTelescope Sep	Err Sep	Within Error Range?	URAT1 PA	iTelescope PA	Err PA	Within Error Range?
STT 57CD	9.929	9.935	0.138	Yes	319.955	320.086	0.795	Yes
STT 107AB	10.211	10.081	0.131	Yes	305.795	305.359	0.744	Yes
STT 107AC	10.114	9.814	0.131	No (1)	346.461	346.669	0.765	Yes
STT 116AC	17.770	17.781	0.102	Yes	64.783	64.684	0.329	Yes
STT 63AB	7.090	6.703	0.129	No (2)	270.137	269.423	1.100	Yes
STT 163AB, C	14.221	14.207	0.128	Yes	165.748	165.172	0.515	No (3)
STT 198AB	14.909	15.008	0.081	No (3)	115.630	115.199	0.311	No (3)
STT 488AB	14.944	14.881	0.101	Yes	334.847	334.802	0.388	Yes
STT 467AB	22.992	23.023	0.134	Yes	273.384	273.200	0.334	Yes

Notes: All astrometry results in this report are to some degree influenced by the difficulty of centroid detection due to the brightness of the primaries, so the calculated error range is probably a bit on the optimistic side.
(1) Two measurements based on iT27 images regarding separation are obviously outliers, without them the averaged separation would be $10.020^{\prime \prime}$ and thus within the error range
(2) One iT18 image delivered an outlier result here, but even without this outlier the comparison with URAT1 stays outside the error range. Given the brightness of the primary the reason for this might be a less than perfect URAT1 centroid detection as our result here corresponds very well with the current WDS catalog value
(3) Result only slightly outside the given error range.

STT Doubles with Large $\mathbf{\Delta M}$ - Part VIII: Tau Per Ori Cam Mon Cnc Peg

(Continued from page 179)
Elevation 2225 m

* iT18: 318 mm CDK with 2541 mm focal length. CCD: SBIG-STXL-6303E. Resolution $0.73 \mathrm{arcsec} /$ pixel. V-filter. Located in Nerpio. Spain. Elevation 1650m
* iT21: 431 mm CDK with 1940 mm focal length. CCD: FLI-PL6303E. Resolution 0.96 arcsec/pixel. V-filter. Located in Mayhill. New Mexico. Elevation 2225m
- AAVSO VPhot for initial plate solving
- AAVSO APASS providing Vmags for faint reference stars (indirect via UCAC4)
- UCAC4 catalog (online via the University of Heidelberg website and Vizier and locally from USNO DVD) for counterchecks
- URAT1 catalog for high precision plate solving
- Aladin Sky Atlas v8.0 for counterchecks
- SIMBAD. VizieR for counterchecks
- 2MASS All Sky Catalog for counterchecks
- URAT1 Survey (preliminary) for counterchecks
- AstroPlanner v2.2 for object selection. session planning and for catalog based counterchecks
- MaxIm DL6 v6.08 for plate solving on base of the UCAC4 catalog
- Astrometrica v4.9.1.420 for astrometry and photometry measurements

References

Buchheim, Robert, 2008, "CCD Double-Star Measurements at Altimira Observatory in 2007", Journal of Double Star Observations, 4, 27-31. Formulas for calculating Separation and Position Angle from the RA Dec coordinates given as

$$
\text { Sep }=\sqrt{\left[\left(R A_{2}-R A_{1}\right) \cos \left(D e c_{1}\right)\right]^{2}+\left(\text { Dec }_{2}-\text { Dec }_{1}\right)^{2}}
$$

in radians and

$$
R A=\arctan \left[\frac{\left(R A_{2}-R A_{1}\right) \cos \left(D e c_{1}\right)}{D e c_{2}-D e c_{1}}\right]
$$

in radians depending on quadrant
Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole. Part I, University of Chicago Press, Chicago.
Burnham, S.W., 1906, A General Catalogue of Double Stars Within 120° of the North Pole. Part II, University of Chicago Press, Chicago.

Greaney, Michael, 2012. "Some Useful Formulae" in Observing and Measuring Visual Double Stars. 2nd Edition, R.W. Argyle, ed., pg 359, Springer, New York.

Hussey, W.J., 1901, Micrometrical Observations of the Double Stars Discovered at Pulkowa Made with the Thirty-Six-Inch and Twelve-Inch Refractors of Lick Observatory, pp. 14-16, A.J. Johnston, Sacramento.
Knapp, Wilfried; Nanson, John; Smith, Steven, 2015, "STT Doubles with Large Δ M - Part I: Gem", Journal of Double Star Observations, 11, 390-401.
Knapp, Wilfried; Nanson, John; Smith, Steven, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part II: Leo and UMa", Journal of Double Star Observations, 12, 111-127.
Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part III: Vir. Ser. CrB. Com and Boo", Journal of Double Star Observations, 12, 128-142.
Knapp, Wilfried; Nanson, John, 2016, "STT Doubles with Large $\Delta \mathrm{M}$ - Part IV: Ophiuchus and Hercules", Journal of Double Star Observations, 12, 361373.

Knapp, Wilfried; Nanson, John, 2016. "STT Doubles with Large $\Delta \mathrm{M}-$ Part V: Aquila, Delphinus, Cygnus and Aqarius", Journal of Double Star Observations, 12, 474-487.
Knapp, Wilfried; Nanson, John, 2016. "STT Doubles with Large $\Delta \mathrm{M}$ - Part VI", Cygnus Multiples", Journal of Double Star Observations, 12, 519-534.
Knapp, Wilfried; Nanson, John, 2017, "STT Doubles with Large $\Delta \mathrm{M}-$ Part VII: Andromeda, Pisces, Auriga", Journal of Double Star Observations, 13, 75-86.
Struve, Otto Wilhelm, 1845, Catalogue de 514 Étoiles Doubles et Multiples Découvertes Sur L'Hémisphère Céleste Boréal par La Grand Lunette de L'Observatoire Central de Poulkova. L'Académie Impériale des Sciences, St. Pétersbourg.
Zacharias, Norbert et al., 2015, "The First U.S. Naval Observatory Robotic Astrometric Telescope Cata$\log ($ URAT1)", The Astronomical Journal, 150, 112.

